Random matrices :: high dimensional phenomena /
This book focuses on the behaviour of large random matrices. Standard results are covered, and the presentation emphasizes elementary operator theory and differential equations, so as to be accessible to graduate students and other non-experts. The introductory chapters review material on Lie groups...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge ; New York :
Cambridge University Press,
2009.
|
Schriftenreihe: | London Mathematical Society lecture note series ;
367. |
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | This book focuses on the behaviour of large random matrices. Standard results are covered, and the presentation emphasizes elementary operator theory and differential equations, so as to be accessible to graduate students and other non-experts. The introductory chapters review material on Lie groups and probability measures in a style suitable for applications in random matrix theory. Later chapters use modern convexity theory to establish subtle results about the convergence of eigenvalue distributions as the size of the matrices increases. Random matrices are viewed as geometrical objects with large dimension. The book analyzes the concentration of measure phenomenon, which describes how measures behave on geometrical objects with large dimension. To prove such results for random matrices, the book develops the modern theory of optimal transportation and proves the associated functional inequalities involving entropy and information. These include the logarithmic Sobolev inequality, which measures how fast some physical systems converge to equilibrium. |
Beschreibung: | 1 online resource (x, 437 pages) |
Bibliographie: | Includes bibliographical references (pages 424-432) and index. |
ISBN: | 9781139127547 1139127543 9781139107129 1139107127 1107203619 9781107203617 1139122622 9781139122627 9786613295866 6613295868 1139116886 9781139116886 |
Internformat
MARC
LEADER | 00000cam a2200000 i 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn759207756 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr mn||||||||| | ||
008 | 111101t20092009enk ob 001 0 eng d | ||
010 | |z 2010275269 | ||
040 | |a N$T |b eng |e rda |e pn |c N$T |d E7B |d REDDC |d OCLCQ |d YDXCP |d OCLCQ |d DEBSZ |d CAMBR |d OCLCQ |d OL$ |d IDEBK |d AUD |d OCLCQ |d OCLCF |d OCLCQ |d HEBIS |d OCLCO |d UAB |d YDX |d OCLCO |d OSU |d OCLCQ |d INT |d AU@ |d OCLCO |d OCLCQ |d OCLCO |d OCLCQ |d VLY |d UKAHL |d OCLCO |d OCLCQ |d OCLCO |d OCLCL |d OCLCQ |d OCLCL |d SFB |d OCLCQ | ||
019 | |a 775863492 |a 816866915 |a 817935600 |a 819630798 |a 853659721 |a 1162248898 |a 1167176220 |a 1241867951 |a 1450855222 | ||
020 | |a 9781139127547 |q (electronic bk.) | ||
020 | |a 1139127543 |q (electronic bk.) | ||
020 | |a 9781139107129 |q (electronic bk.) | ||
020 | |a 1139107127 |q (electronic bk.) | ||
020 | |z 9780521133128 |q (paperback) | ||
020 | |z 0521133122 |q (paperback) | ||
020 | |z 9781139114714 | ||
020 | |z 1139114719 | ||
020 | |z 9781283295864 | ||
020 | |z 1283295865 | ||
020 | |a 1107203619 | ||
020 | |a 9781107203617 | ||
020 | |a 1139122622 | ||
020 | |a 9781139122627 | ||
020 | |a 9786613295866 | ||
020 | |a 6613295868 | ||
020 | |a 1139116886 | ||
020 | |a 9781139116886 | ||
035 | |a (OCoLC)759207756 |z (OCoLC)775863492 |z (OCoLC)816866915 |z (OCoLC)817935600 |z (OCoLC)819630798 |z (OCoLC)853659721 |z (OCoLC)1162248898 |z (OCoLC)1167176220 |z (OCoLC)1241867951 |z (OCoLC)1450855222 | ||
050 | 4 | |a QA188 |b .B568 2009eb | |
072 | 7 | |a MAT |x 019000 |2 bisacsh | |
072 | 7 | |a PBF |2 bicssc | |
082 | 7 | |a 512.9434 |2 22 | |
084 | |a SI 320 |2 rvk | ||
084 | |a SK 820 |2 rvk | ||
084 | |a MAT 155f |2 stub | ||
049 | |a MAIN | ||
100 | 1 | |a Blower, G. |q (Gordon), |e author. |1 https://id.oclc.org/worldcat/entity/E39PCjJ73hYtvVKJqbfpx8b8G3 |0 http://id.loc.gov/authorities/names/nb2009027134 | |
245 | 1 | 0 | |a Random matrices : |b high dimensional phenomena / |c Gordon Blower, Lancaster University. |
264 | 1 | |a Cambridge ; |a New York : |b Cambridge University Press, |c 2009. | |
264 | 4 | |c ©2009 | |
300 | |a 1 online resource (x, 437 pages) | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |a London Mathematical Society lecture note series ; |v 367 | |
520 | |a This book focuses on the behaviour of large random matrices. Standard results are covered, and the presentation emphasizes elementary operator theory and differential equations, so as to be accessible to graduate students and other non-experts. The introductory chapters review material on Lie groups and probability measures in a style suitable for applications in random matrix theory. Later chapters use modern convexity theory to establish subtle results about the convergence of eigenvalue distributions as the size of the matrices increases. Random matrices are viewed as geometrical objects with large dimension. The book analyzes the concentration of measure phenomenon, which describes how measures behave on geometrical objects with large dimension. To prove such results for random matrices, the book develops the modern theory of optimal transportation and proves the associated functional inequalities involving entropy and information. These include the logarithmic Sobolev inequality, which measures how fast some physical systems converge to equilibrium. | ||
504 | |a Includes bibliographical references (pages 424-432) and index. | ||
588 | 0 | |a Print version record. | |
505 | 0 | |a Cover; Title; Copyright; Dedication; Contents; Introduction; 1 Metric measure spaces; Abstract; 1.1 Weak convergence on compact metric spaces; 1.2 Invariant measure on a compact metric group; 1.3 Measures on non-compact Polish spaces; 1.4 The Brunn-Minkowski inequality; 1.5 Gaussian measures; 1.6 Surface area measure on the spheres; 1.7 Lipschitz functions and the Hausdorff metric; 1.8 Characteristic functions and Cauchy transforms; 2 Lie groups and matrix ensembles; Abstract; 2.1 The classical groups, their eigenvalues and norms; 2.2 Determinants and functional calculus. | |
505 | 8 | |a 2.3 Linear Lie groups2.4 Connections and curvature; 2.5 Generalized ensembles; 2.6 The Weyl integration formula; 2.7 Dyson's circular ensembles; 2.8 Circular orthogonal ensemble; 2.9 Circular symplectic ensemble; 3 Entropy and concentration of measure; Abstract; 3.1 Relative entropy; 3.2 Concentration of measure; 3.3 Transportation; 3.4 Transportation inequalities; 3.5 Transportation inequalities for uniformlyconvex potentials; 3.6 Concentration of measure in matrix ensembles; 3.7 Concentration for rectangular Gaussian matrices; 3.8 Concentration on the sphere. | |
505 | 8 | |a 3.9 Concentration for compact Lie groups4 Free entropy and equilibrium; Abstract; 4.1 Logarithmic energy and equilibrium measure; 4.2 Energy spaces on the disc; 4.3 Free versus classical entropy on the spheres; 4.4 Equilibrium measures for potentials on the real line; 4.5 Equilibrium densities for convex potentials; 4.6 The quartic model with positive leading term; 4.7 Quartic models with negative leading term; 4.8 Displacement convexity and relative free entropy; 4.9 Toeplitz determinants; 5 Convergence to equilibrium; Abstract; 5.1 Convergence to arclength; 5.2 Convergence of ensembles. | |
505 | 8 | |a 5.3 Mean field convergence5.4 Almost sure weak convergence for uniformly convex potentials; 5.5 Convergence for the singular numbers from the Wishart distribution; 6 Gradient flows and functional inequalities; Abstract; 6.1 Variation of functionals and gradient flows; 6.2 Logarithmic Sobolev inequalities; 6.3 Logarithmic Sobolev inequalities for uniformlyconvex potentials; 6.4 Fisher's information and Shannon's entropy; 6.5 Free information and entropy; 6.6 Free logarithmic Sobolev inequality; 6.7 Logarithmic Sobolev and spectral gap inequalities. | |
505 | 8 | |a 6.8 Inequalities for Gibbs measures onRiemannian manifolds7 Young tableaux; Abstract; 7.1 Group representations; 7.2 Young diagrams; 7.3 The Vershik distribution; 7.4 Distribution of the longest increasing subsequence; 7.5 Inclusion-exclusion principle; 8 Random point fields and random matrices; Abstract; 8.1 Determinantal random point fields; 8.2 Determinantal random point fields on the real line; 8.3 Determinantal random point fields and orthogonal polynomials; 8.4 De Branges's spaces; 8.5 Limits of kernels; 9 Integrable operators and differential equations; Abstract. | |
546 | |a English. | ||
650 | 0 | |a Random matrices. |0 http://id.loc.gov/authorities/subjects/sh86001920 | |
650 | 6 | |a Matrices aléatoires. | |
650 | 7 | |a MATHEMATICS |x Matrices. |2 bisacsh | |
650 | 7 | |a Random matrices |2 fast | |
650 | 7 | |a Stochastische Matrix |2 gnd |0 http://d-nb.info/gnd/4057624-3 | |
758 | |i has work: |a Random matrices (Text) |1 https://id.oclc.org/worldcat/entity/E39PCGkYP3QbdPXjqfWmppcJQq |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
776 | 0 | 8 | |i Print version: |a Blower, G. (Gordon). |t Random matrices. |d Cambridge ; New York : Cambridge University Press, ©2009 |z 9780521133128 |w (DLC) 2010275269 |w (OCoLC)401146699 |
830 | 0 | |a London Mathematical Society lecture note series ; |v 367. |0 http://id.loc.gov/authorities/names/n42015587 | |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=399264 |3 Volltext |
938 | |a Askews and Holts Library Services |b ASKH |n AH21787960 | ||
938 | |a ebrary |b EBRY |n ebr10502819 | ||
938 | |a EBSCOhost |b EBSC |n 399264 | ||
938 | |a ProQuest MyiLibrary Digital eBook Collection |b IDEB |n 329586 | ||
938 | |a YBP Library Services |b YANK |n 7205428 | ||
938 | |a YBP Library Services |b YANK |n 7235588 | ||
938 | |a YBP Library Services |b YANK |n 7302875 | ||
938 | |a YBP Library Services |b YANK |n 7499518 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn759207756 |
---|---|
_version_ | 1816881775769550849 |
adam_text | |
any_adam_object | |
author | Blower, G. (Gordon) |
author_GND | http://id.loc.gov/authorities/names/nb2009027134 |
author_facet | Blower, G. (Gordon) |
author_role | aut |
author_sort | Blower, G. |
author_variant | g b gb |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA188 |
callnumber-raw | QA188 .B568 2009eb |
callnumber-search | QA188 .B568 2009eb |
callnumber-sort | QA 3188 B568 42009EB |
callnumber-subject | QA - Mathematics |
classification_rvk | SI 320 SK 820 |
classification_tum | MAT 155f |
collection | ZDB-4-EBA |
contents | Cover; Title; Copyright; Dedication; Contents; Introduction; 1 Metric measure spaces; Abstract; 1.1 Weak convergence on compact metric spaces; 1.2 Invariant measure on a compact metric group; 1.3 Measures on non-compact Polish spaces; 1.4 The Brunn-Minkowski inequality; 1.5 Gaussian measures; 1.6 Surface area measure on the spheres; 1.7 Lipschitz functions and the Hausdorff metric; 1.8 Characteristic functions and Cauchy transforms; 2 Lie groups and matrix ensembles; Abstract; 2.1 The classical groups, their eigenvalues and norms; 2.2 Determinants and functional calculus. 2.3 Linear Lie groups2.4 Connections and curvature; 2.5 Generalized ensembles; 2.6 The Weyl integration formula; 2.7 Dyson's circular ensembles; 2.8 Circular orthogonal ensemble; 2.9 Circular symplectic ensemble; 3 Entropy and concentration of measure; Abstract; 3.1 Relative entropy; 3.2 Concentration of measure; 3.3 Transportation; 3.4 Transportation inequalities; 3.5 Transportation inequalities for uniformlyconvex potentials; 3.6 Concentration of measure in matrix ensembles; 3.7 Concentration for rectangular Gaussian matrices; 3.8 Concentration on the sphere. 3.9 Concentration for compact Lie groups4 Free entropy and equilibrium; Abstract; 4.1 Logarithmic energy and equilibrium measure; 4.2 Energy spaces on the disc; 4.3 Free versus classical entropy on the spheres; 4.4 Equilibrium measures for potentials on the real line; 4.5 Equilibrium densities for convex potentials; 4.6 The quartic model with positive leading term; 4.7 Quartic models with negative leading term; 4.8 Displacement convexity and relative free entropy; 4.9 Toeplitz determinants; 5 Convergence to equilibrium; Abstract; 5.1 Convergence to arclength; 5.2 Convergence of ensembles. 5.3 Mean field convergence5.4 Almost sure weak convergence for uniformly convex potentials; 5.5 Convergence for the singular numbers from the Wishart distribution; 6 Gradient flows and functional inequalities; Abstract; 6.1 Variation of functionals and gradient flows; 6.2 Logarithmic Sobolev inequalities; 6.3 Logarithmic Sobolev inequalities for uniformlyconvex potentials; 6.4 Fisher's information and Shannon's entropy; 6.5 Free information and entropy; 6.6 Free logarithmic Sobolev inequality; 6.7 Logarithmic Sobolev and spectral gap inequalities. 6.8 Inequalities for Gibbs measures onRiemannian manifolds7 Young tableaux; Abstract; 7.1 Group representations; 7.2 Young diagrams; 7.3 The Vershik distribution; 7.4 Distribution of the longest increasing subsequence; 7.5 Inclusion-exclusion principle; 8 Random point fields and random matrices; Abstract; 8.1 Determinantal random point fields; 8.2 Determinantal random point fields on the real line; 8.3 Determinantal random point fields and orthogonal polynomials; 8.4 De Branges's spaces; 8.5 Limits of kernels; 9 Integrable operators and differential equations; Abstract. |
ctrlnum | (OCoLC)759207756 |
dewey-full | 512.9434 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512.9434 |
dewey-search | 512.9434 |
dewey-sort | 3512.9434 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>07773cam a2200889 i 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn759207756</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr mn|||||||||</controlfield><controlfield tag="008">111101t20092009enk ob 001 0 eng d</controlfield><datafield tag="010" ind1=" " ind2=" "><subfield code="z"> 2010275269</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">N$T</subfield><subfield code="b">eng</subfield><subfield code="e">rda</subfield><subfield code="e">pn</subfield><subfield code="c">N$T</subfield><subfield code="d">E7B</subfield><subfield code="d">REDDC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">YDXCP</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">DEBSZ</subfield><subfield code="d">CAMBR</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OL$</subfield><subfield code="d">IDEBK</subfield><subfield code="d">AUD</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCF</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">HEBIS</subfield><subfield code="d">OCLCO</subfield><subfield code="d">UAB</subfield><subfield code="d">YDX</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OSU</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">INT</subfield><subfield code="d">AU@</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">VLY</subfield><subfield code="d">UKAHL</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCL</subfield><subfield code="d">SFB</subfield><subfield code="d">OCLCQ</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">775863492</subfield><subfield code="a">816866915</subfield><subfield code="a">817935600</subfield><subfield code="a">819630798</subfield><subfield code="a">853659721</subfield><subfield code="a">1162248898</subfield><subfield code="a">1167176220</subfield><subfield code="a">1241867951</subfield><subfield code="a">1450855222</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781139127547</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1139127543</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781139107129</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1139107127</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9780521133128</subfield><subfield code="q">(paperback)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">0521133122</subfield><subfield code="q">(paperback)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9781139114714</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">1139114719</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9781283295864</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">1283295865</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1107203619</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781107203617</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1139122622</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781139122627</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9786613295866</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">6613295868</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1139116886</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781139116886</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)759207756</subfield><subfield code="z">(OCoLC)775863492</subfield><subfield code="z">(OCoLC)816866915</subfield><subfield code="z">(OCoLC)817935600</subfield><subfield code="z">(OCoLC)819630798</subfield><subfield code="z">(OCoLC)853659721</subfield><subfield code="z">(OCoLC)1162248898</subfield><subfield code="z">(OCoLC)1167176220</subfield><subfield code="z">(OCoLC)1241867951</subfield><subfield code="z">(OCoLC)1450855222</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA188</subfield><subfield code="b">.B568 2009eb</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">019000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">PBF</subfield><subfield code="2">bicssc</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">512.9434</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SI 320</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 820</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 155f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Blower, G.</subfield><subfield code="q">(Gordon),</subfield><subfield code="e">author.</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCjJ73hYtvVKJqbfpx8b8G3</subfield><subfield code="0">http://id.loc.gov/authorities/names/nb2009027134</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Random matrices :</subfield><subfield code="b">high dimensional phenomena /</subfield><subfield code="c">Gordon Blower, Lancaster University.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge ;</subfield><subfield code="a">New York :</subfield><subfield code="b">Cambridge University Press,</subfield><subfield code="c">2009.</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">©2009</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (x, 437 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">London Mathematical Society lecture note series ;</subfield><subfield code="v">367</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This book focuses on the behaviour of large random matrices. Standard results are covered, and the presentation emphasizes elementary operator theory and differential equations, so as to be accessible to graduate students and other non-experts. The introductory chapters review material on Lie groups and probability measures in a style suitable for applications in random matrix theory. Later chapters use modern convexity theory to establish subtle results about the convergence of eigenvalue distributions as the size of the matrices increases. Random matrices are viewed as geometrical objects with large dimension. The book analyzes the concentration of measure phenomenon, which describes how measures behave on geometrical objects with large dimension. To prove such results for random matrices, the book develops the modern theory of optimal transportation and proves the associated functional inequalities involving entropy and information. These include the logarithmic Sobolev inequality, which measures how fast some physical systems converge to equilibrium.</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (pages 424-432) and index.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Cover; Title; Copyright; Dedication; Contents; Introduction; 1 Metric measure spaces; Abstract; 1.1 Weak convergence on compact metric spaces; 1.2 Invariant measure on a compact metric group; 1.3 Measures on non-compact Polish spaces; 1.4 The Brunn-Minkowski inequality; 1.5 Gaussian measures; 1.6 Surface area measure on the spheres; 1.7 Lipschitz functions and the Hausdorff metric; 1.8 Characteristic functions and Cauchy transforms; 2 Lie groups and matrix ensembles; Abstract; 2.1 The classical groups, their eigenvalues and norms; 2.2 Determinants and functional calculus.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">2.3 Linear Lie groups2.4 Connections and curvature; 2.5 Generalized ensembles; 2.6 The Weyl integration formula; 2.7 Dyson's circular ensembles; 2.8 Circular orthogonal ensemble; 2.9 Circular symplectic ensemble; 3 Entropy and concentration of measure; Abstract; 3.1 Relative entropy; 3.2 Concentration of measure; 3.3 Transportation; 3.4 Transportation inequalities; 3.5 Transportation inequalities for uniformlyconvex potentials; 3.6 Concentration of measure in matrix ensembles; 3.7 Concentration for rectangular Gaussian matrices; 3.8 Concentration on the sphere.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">3.9 Concentration for compact Lie groups4 Free entropy and equilibrium; Abstract; 4.1 Logarithmic energy and equilibrium measure; 4.2 Energy spaces on the disc; 4.3 Free versus classical entropy on the spheres; 4.4 Equilibrium measures for potentials on the real line; 4.5 Equilibrium densities for convex potentials; 4.6 The quartic model with positive leading term; 4.7 Quartic models with negative leading term; 4.8 Displacement convexity and relative free entropy; 4.9 Toeplitz determinants; 5 Convergence to equilibrium; Abstract; 5.1 Convergence to arclength; 5.2 Convergence of ensembles.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">5.3 Mean field convergence5.4 Almost sure weak convergence for uniformly convex potentials; 5.5 Convergence for the singular numbers from the Wishart distribution; 6 Gradient flows and functional inequalities; Abstract; 6.1 Variation of functionals and gradient flows; 6.2 Logarithmic Sobolev inequalities; 6.3 Logarithmic Sobolev inequalities for uniformlyconvex potentials; 6.4 Fisher's information and Shannon's entropy; 6.5 Free information and entropy; 6.6 Free logarithmic Sobolev inequality; 6.7 Logarithmic Sobolev and spectral gap inequalities.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">6.8 Inequalities for Gibbs measures onRiemannian manifolds7 Young tableaux; Abstract; 7.1 Group representations; 7.2 Young diagrams; 7.3 The Vershik distribution; 7.4 Distribution of the longest increasing subsequence; 7.5 Inclusion-exclusion principle; 8 Random point fields and random matrices; Abstract; 8.1 Determinantal random point fields; 8.2 Determinantal random point fields on the real line; 8.3 Determinantal random point fields and orthogonal polynomials; 8.4 De Branges's spaces; 8.5 Limits of kernels; 9 Integrable operators and differential equations; Abstract.</subfield></datafield><datafield tag="546" ind1=" " ind2=" "><subfield code="a">English.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Random matrices.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh86001920</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Matrices aléatoires.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Matrices.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Random matrices</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Stochastische Matrix</subfield><subfield code="2">gnd</subfield><subfield code="0">http://d-nb.info/gnd/4057624-3</subfield></datafield><datafield tag="758" ind1=" " ind2=" "><subfield code="i">has work:</subfield><subfield code="a">Random matrices (Text)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCGkYP3QbdPXjqfWmppcJQq</subfield><subfield code="4">https://id.oclc.org/worldcat/ontology/hasWork</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Blower, G. (Gordon).</subfield><subfield code="t">Random matrices.</subfield><subfield code="d">Cambridge ; New York : Cambridge University Press, ©2009</subfield><subfield code="z">9780521133128</subfield><subfield code="w">(DLC) 2010275269</subfield><subfield code="w">(OCoLC)401146699</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">London Mathematical Society lecture note series ;</subfield><subfield code="v">367.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n42015587</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=399264</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH21787960</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ebrary</subfield><subfield code="b">EBRY</subfield><subfield code="n">ebr10502819</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">399264</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest MyiLibrary Digital eBook Collection</subfield><subfield code="b">IDEB</subfield><subfield code="n">329586</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">7205428</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">7235588</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">7302875</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">7499518</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn759207756 |
illustrated | Not Illustrated |
indexdate | 2024-11-27T13:18:05Z |
institution | BVB |
isbn | 9781139127547 1139127543 9781139107129 1139107127 1107203619 9781107203617 1139122622 9781139122627 9786613295866 6613295868 1139116886 9781139116886 |
language | English |
oclc_num | 759207756 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (x, 437 pages) |
psigel | ZDB-4-EBA |
publishDate | 2009 |
publishDateSearch | 2009 |
publishDateSort | 2009 |
publisher | Cambridge University Press, |
record_format | marc |
series | London Mathematical Society lecture note series ; |
series2 | London Mathematical Society lecture note series ; |
spelling | Blower, G. (Gordon), author. https://id.oclc.org/worldcat/entity/E39PCjJ73hYtvVKJqbfpx8b8G3 http://id.loc.gov/authorities/names/nb2009027134 Random matrices : high dimensional phenomena / Gordon Blower, Lancaster University. Cambridge ; New York : Cambridge University Press, 2009. ©2009 1 online resource (x, 437 pages) text txt rdacontent computer c rdamedia online resource cr rdacarrier London Mathematical Society lecture note series ; 367 This book focuses on the behaviour of large random matrices. Standard results are covered, and the presentation emphasizes elementary operator theory and differential equations, so as to be accessible to graduate students and other non-experts. The introductory chapters review material on Lie groups and probability measures in a style suitable for applications in random matrix theory. Later chapters use modern convexity theory to establish subtle results about the convergence of eigenvalue distributions as the size of the matrices increases. Random matrices are viewed as geometrical objects with large dimension. The book analyzes the concentration of measure phenomenon, which describes how measures behave on geometrical objects with large dimension. To prove such results for random matrices, the book develops the modern theory of optimal transportation and proves the associated functional inequalities involving entropy and information. These include the logarithmic Sobolev inequality, which measures how fast some physical systems converge to equilibrium. Includes bibliographical references (pages 424-432) and index. Print version record. Cover; Title; Copyright; Dedication; Contents; Introduction; 1 Metric measure spaces; Abstract; 1.1 Weak convergence on compact metric spaces; 1.2 Invariant measure on a compact metric group; 1.3 Measures on non-compact Polish spaces; 1.4 The Brunn-Minkowski inequality; 1.5 Gaussian measures; 1.6 Surface area measure on the spheres; 1.7 Lipschitz functions and the Hausdorff metric; 1.8 Characteristic functions and Cauchy transforms; 2 Lie groups and matrix ensembles; Abstract; 2.1 The classical groups, their eigenvalues and norms; 2.2 Determinants and functional calculus. 2.3 Linear Lie groups2.4 Connections and curvature; 2.5 Generalized ensembles; 2.6 The Weyl integration formula; 2.7 Dyson's circular ensembles; 2.8 Circular orthogonal ensemble; 2.9 Circular symplectic ensemble; 3 Entropy and concentration of measure; Abstract; 3.1 Relative entropy; 3.2 Concentration of measure; 3.3 Transportation; 3.4 Transportation inequalities; 3.5 Transportation inequalities for uniformlyconvex potentials; 3.6 Concentration of measure in matrix ensembles; 3.7 Concentration for rectangular Gaussian matrices; 3.8 Concentration on the sphere. 3.9 Concentration for compact Lie groups4 Free entropy and equilibrium; Abstract; 4.1 Logarithmic energy and equilibrium measure; 4.2 Energy spaces on the disc; 4.3 Free versus classical entropy on the spheres; 4.4 Equilibrium measures for potentials on the real line; 4.5 Equilibrium densities for convex potentials; 4.6 The quartic model with positive leading term; 4.7 Quartic models with negative leading term; 4.8 Displacement convexity and relative free entropy; 4.9 Toeplitz determinants; 5 Convergence to equilibrium; Abstract; 5.1 Convergence to arclength; 5.2 Convergence of ensembles. 5.3 Mean field convergence5.4 Almost sure weak convergence for uniformly convex potentials; 5.5 Convergence for the singular numbers from the Wishart distribution; 6 Gradient flows and functional inequalities; Abstract; 6.1 Variation of functionals and gradient flows; 6.2 Logarithmic Sobolev inequalities; 6.3 Logarithmic Sobolev inequalities for uniformlyconvex potentials; 6.4 Fisher's information and Shannon's entropy; 6.5 Free information and entropy; 6.6 Free logarithmic Sobolev inequality; 6.7 Logarithmic Sobolev and spectral gap inequalities. 6.8 Inequalities for Gibbs measures onRiemannian manifolds7 Young tableaux; Abstract; 7.1 Group representations; 7.2 Young diagrams; 7.3 The Vershik distribution; 7.4 Distribution of the longest increasing subsequence; 7.5 Inclusion-exclusion principle; 8 Random point fields and random matrices; Abstract; 8.1 Determinantal random point fields; 8.2 Determinantal random point fields on the real line; 8.3 Determinantal random point fields and orthogonal polynomials; 8.4 De Branges's spaces; 8.5 Limits of kernels; 9 Integrable operators and differential equations; Abstract. English. Random matrices. http://id.loc.gov/authorities/subjects/sh86001920 Matrices aléatoires. MATHEMATICS Matrices. bisacsh Random matrices fast Stochastische Matrix gnd http://d-nb.info/gnd/4057624-3 has work: Random matrices (Text) https://id.oclc.org/worldcat/entity/E39PCGkYP3QbdPXjqfWmppcJQq https://id.oclc.org/worldcat/ontology/hasWork Print version: Blower, G. (Gordon). Random matrices. Cambridge ; New York : Cambridge University Press, ©2009 9780521133128 (DLC) 2010275269 (OCoLC)401146699 London Mathematical Society lecture note series ; 367. http://id.loc.gov/authorities/names/n42015587 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=399264 Volltext |
spellingShingle | Blower, G. (Gordon) Random matrices : high dimensional phenomena / London Mathematical Society lecture note series ; Cover; Title; Copyright; Dedication; Contents; Introduction; 1 Metric measure spaces; Abstract; 1.1 Weak convergence on compact metric spaces; 1.2 Invariant measure on a compact metric group; 1.3 Measures on non-compact Polish spaces; 1.4 The Brunn-Minkowski inequality; 1.5 Gaussian measures; 1.6 Surface area measure on the spheres; 1.7 Lipschitz functions and the Hausdorff metric; 1.8 Characteristic functions and Cauchy transforms; 2 Lie groups and matrix ensembles; Abstract; 2.1 The classical groups, their eigenvalues and norms; 2.2 Determinants and functional calculus. 2.3 Linear Lie groups2.4 Connections and curvature; 2.5 Generalized ensembles; 2.6 The Weyl integration formula; 2.7 Dyson's circular ensembles; 2.8 Circular orthogonal ensemble; 2.9 Circular symplectic ensemble; 3 Entropy and concentration of measure; Abstract; 3.1 Relative entropy; 3.2 Concentration of measure; 3.3 Transportation; 3.4 Transportation inequalities; 3.5 Transportation inequalities for uniformlyconvex potentials; 3.6 Concentration of measure in matrix ensembles; 3.7 Concentration for rectangular Gaussian matrices; 3.8 Concentration on the sphere. 3.9 Concentration for compact Lie groups4 Free entropy and equilibrium; Abstract; 4.1 Logarithmic energy and equilibrium measure; 4.2 Energy spaces on the disc; 4.3 Free versus classical entropy on the spheres; 4.4 Equilibrium measures for potentials on the real line; 4.5 Equilibrium densities for convex potentials; 4.6 The quartic model with positive leading term; 4.7 Quartic models with negative leading term; 4.8 Displacement convexity and relative free entropy; 4.9 Toeplitz determinants; 5 Convergence to equilibrium; Abstract; 5.1 Convergence to arclength; 5.2 Convergence of ensembles. 5.3 Mean field convergence5.4 Almost sure weak convergence for uniformly convex potentials; 5.5 Convergence for the singular numbers from the Wishart distribution; 6 Gradient flows and functional inequalities; Abstract; 6.1 Variation of functionals and gradient flows; 6.2 Logarithmic Sobolev inequalities; 6.3 Logarithmic Sobolev inequalities for uniformlyconvex potentials; 6.4 Fisher's information and Shannon's entropy; 6.5 Free information and entropy; 6.6 Free logarithmic Sobolev inequality; 6.7 Logarithmic Sobolev and spectral gap inequalities. 6.8 Inequalities for Gibbs measures onRiemannian manifolds7 Young tableaux; Abstract; 7.1 Group representations; 7.2 Young diagrams; 7.3 The Vershik distribution; 7.4 Distribution of the longest increasing subsequence; 7.5 Inclusion-exclusion principle; 8 Random point fields and random matrices; Abstract; 8.1 Determinantal random point fields; 8.2 Determinantal random point fields on the real line; 8.3 Determinantal random point fields and orthogonal polynomials; 8.4 De Branges's spaces; 8.5 Limits of kernels; 9 Integrable operators and differential equations; Abstract. Random matrices. http://id.loc.gov/authorities/subjects/sh86001920 Matrices aléatoires. MATHEMATICS Matrices. bisacsh Random matrices fast Stochastische Matrix gnd http://d-nb.info/gnd/4057624-3 |
subject_GND | http://id.loc.gov/authorities/subjects/sh86001920 http://d-nb.info/gnd/4057624-3 |
title | Random matrices : high dimensional phenomena / |
title_auth | Random matrices : high dimensional phenomena / |
title_exact_search | Random matrices : high dimensional phenomena / |
title_full | Random matrices : high dimensional phenomena / Gordon Blower, Lancaster University. |
title_fullStr | Random matrices : high dimensional phenomena / Gordon Blower, Lancaster University. |
title_full_unstemmed | Random matrices : high dimensional phenomena / Gordon Blower, Lancaster University. |
title_short | Random matrices : |
title_sort | random matrices high dimensional phenomena |
title_sub | high dimensional phenomena / |
topic | Random matrices. http://id.loc.gov/authorities/subjects/sh86001920 Matrices aléatoires. MATHEMATICS Matrices. bisacsh Random matrices fast Stochastische Matrix gnd http://d-nb.info/gnd/4057624-3 |
topic_facet | Random matrices. Matrices aléatoires. MATHEMATICS Matrices. Random matrices Stochastische Matrix |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=399264 |
work_keys_str_mv | AT blowerg randommatriceshighdimensionalphenomena |