A primer of infinitesimal analysis /:
One of the most remarkable recent occurrences in mathematics is the refounding, on a rigorous basis, of the idea of infinitesimal quantity, a notion which played an important role in the early development of the calculus and mathematical analysis. In this new edition basic calculus, together with so...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge ; New York :
Cambridge University Press,
©2008.
|
Ausgabe: | 2nd ed. |
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | One of the most remarkable recent occurrences in mathematics is the refounding, on a rigorous basis, of the idea of infinitesimal quantity, a notion which played an important role in the early development of the calculus and mathematical analysis. In this new edition basic calculus, together with some of its applications to simple physical problems, are presented through the use of a straightforward, rigorous, axiomatically formulated concept of 'zero-square', or 'nilpotent' infinitesimal - that is, a quantity so small that its square and all higher powers can be set, literally, to zero. The systematic employment of these infinitesimals reduces the differential calculus to simple algebra and, at the same time, restores to use the "infinitesimal" methods figuring in traditional applications of the calculus to physical problems - a number of which are discussed in this book. This edition also contains an expanded historical and philosophical introduction |
Beschreibung: | 1 online resource (xi, 124 pages) : illustrations |
Bibliographie: | Includes bibliographical references (pages 121-122) and index. |
ISBN: | 9780511371431 0511371438 0511370962 9780511370960 9780521887182 0521887186 9780511369957 0511369956 |
Internformat
MARC
LEADER | 00000cam a2200000 a 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn316764804 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr cnu---unuuu | ||
008 | 090322s2008 enka ob 001 0 eng d | ||
040 | |a N$T |b eng |e pn |c N$T |d OCLCQ |d CDX |d IDEBK |d OSU |d E7B |d REDDC |d OCLCQ |d OCLCF |d YDXCP |d OCLCQ |d UAB |d STF |d OCLCQ |d OL$ |d OCLCO |d OCLCQ |d OCLCO |d OCLCL | ||
019 | |a 302061863 |a 316329577 |a 646780848 |a 957339573 |a 1035710123 | ||
020 | |a 9780511371431 |q (electronic bk.) | ||
020 | |a 0511371438 |q (electronic bk.) | ||
020 | |a 0511370962 |q (electronic bk.) | ||
020 | |a 9780511370960 |q (electronic bk.) | ||
020 | |a 9780521887182 |q (hardback) | ||
020 | |a 0521887186 |q (hardback) | ||
020 | |a 9780511369957 |q (ebook) | ||
020 | |a 0511369956 |q (ebook) | ||
035 | |a (OCoLC)316764804 |z (OCoLC)302061863 |z (OCoLC)316329577 |z (OCoLC)646780848 |z (OCoLC)957339573 |z (OCoLC)1035710123 | ||
050 | 4 | |a QA299.82 |b .B45 2008eb | |
072 | 7 | |a MAT |x 005000 |2 bisacsh | |
072 | 7 | |a MAT |x 034000 |2 bisacsh | |
082 | 7 | |a 515 |2 22 | |
049 | |a MAIN | ||
100 | 1 | |a Bell, J. L. |q (John Lane) |1 https://id.oclc.org/worldcat/entity/E39PBJvMyh4bFf7yMqKkYvcdcP |0 http://id.loc.gov/authorities/names/n50006514 | |
245 | 1 | 2 | |a A primer of infinitesimal analysis / |c John L. Bell. |
250 | |a 2nd ed. | ||
260 | |a Cambridge ; |a New York : |b Cambridge University Press, |c ©2008. | ||
300 | |a 1 online resource (xi, 124 pages) : |b illustrations | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
504 | |a Includes bibliographical references (pages 121-122) and index. | ||
505 | 0 | |a Basic features of smooth worlds -- Basic differential calculus -- The derivative of a function -- Stationary points of functions -- Areas under curves and the constancy principle -- The special functions -- First applications of the differential calculus -- Areas and volumes -- Volumes of revolution -- Arc length; surfaces of revolution; curvature -- Application to physics -- Moments of inertia -- Centres of mass -- Pappus' theorems -- Centres of pressure -- Stretching a spring -- Flexure of beams -- The catenary, the loaded chain, and the bollard-rope -- The Kepler-Newton areal law of motion under a central force -- Multivariable calculus and applications -- Partial derivatives -- Stationary values of functions -- Theory of surfaces. Spacetime metrics -- The heat equation -- The basic equations of hydrodynamics -- The wave equation -- The Cauchy-Riemann equations for complex functions -- The definite integral. Higher-order infinitesimals -- The definite integral -- Higher-order infinitesimals and Taylor's theorem -- The three natural microneighbourhoods of zero -- Synthetic differential geometry -- Tangent vectors and tangent spaces -- Vector fields -- Differentials and directional derivatives -- Smooth infinitesimal analysis as an axiomatic system -- Natural numbers in smooth worlds -- Nonstandard analysis. | |
588 | 0 | |a Print version record. | |
520 | |a One of the most remarkable recent occurrences in mathematics is the refounding, on a rigorous basis, of the idea of infinitesimal quantity, a notion which played an important role in the early development of the calculus and mathematical analysis. In this new edition basic calculus, together with some of its applications to simple physical problems, are presented through the use of a straightforward, rigorous, axiomatically formulated concept of 'zero-square', or 'nilpotent' infinitesimal - that is, a quantity so small that its square and all higher powers can be set, literally, to zero. The systematic employment of these infinitesimals reduces the differential calculus to simple algebra and, at the same time, restores to use the "infinitesimal" methods figuring in traditional applications of the calculus to physical problems - a number of which are discussed in this book. This edition also contains an expanded historical and philosophical introduction | ||
650 | 0 | |a Nonstandard mathematical analysis. |0 http://id.loc.gov/authorities/subjects/sh85082118 | |
650 | 6 | |a Analyse mathématique non standard. | |
650 | 7 | |a MATHEMATICS |x Calculus. |2 bisacsh | |
650 | 7 | |a MATHEMATICS |x Mathematical Analysis. |2 bisacsh | |
650 | 7 | |a Nonstandard mathematical analysis |2 fast | |
758 | |i has work: |a A primer of infinitesimal analysis (Text) |1 https://id.oclc.org/worldcat/entity/E39PCGPm66XpwYw4J8m94VcJTb |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
776 | 0 | 8 | |i Print version: |a Bell, J.L. (John Lane). |t Primer of infinitesimal analysis. |b 2nd ed. |d Cambridge ; New York : Cambridge University Press, ©2008 |z 9780521887182 |z 0521887186 |w (DLC) 2007035724 |w (OCoLC)167516052 |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=259166 |3 Volltext |
938 | |a Coutts Information Services |b COUT |n 9530214 | ||
938 | |a ebrary |b EBRY |n ebr10265010 | ||
938 | |a EBSCOhost |b EBSC |n 259166 | ||
938 | |a ProQuest MyiLibrary Digital eBook Collection |b IDEB |n 194443 | ||
938 | |a YBP Library Services |b YANK |n 2985367 | ||
938 | |a YBP Library Services |b YANK |n 3279365 | ||
938 | |a YBP Library Services |b YANK |n 2914299 | ||
938 | |a YBP Library Services |b YANK |n 2953224 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn316764804 |
---|---|
_version_ | 1816881689440288769 |
adam_text | |
any_adam_object | |
author | Bell, J. L. (John Lane) |
author_GND | http://id.loc.gov/authorities/names/n50006514 |
author_facet | Bell, J. L. (John Lane) |
author_role | |
author_sort | Bell, J. L. |
author_variant | j l b jl jlb |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA299 |
callnumber-raw | QA299.82 .B45 2008eb |
callnumber-search | QA299.82 .B45 2008eb |
callnumber-sort | QA 3299.82 B45 42008EB |
callnumber-subject | QA - Mathematics |
collection | ZDB-4-EBA |
contents | Basic features of smooth worlds -- Basic differential calculus -- The derivative of a function -- Stationary points of functions -- Areas under curves and the constancy principle -- The special functions -- First applications of the differential calculus -- Areas and volumes -- Volumes of revolution -- Arc length; surfaces of revolution; curvature -- Application to physics -- Moments of inertia -- Centres of mass -- Pappus' theorems -- Centres of pressure -- Stretching a spring -- Flexure of beams -- The catenary, the loaded chain, and the bollard-rope -- The Kepler-Newton areal law of motion under a central force -- Multivariable calculus and applications -- Partial derivatives -- Stationary values of functions -- Theory of surfaces. Spacetime metrics -- The heat equation -- The basic equations of hydrodynamics -- The wave equation -- The Cauchy-Riemann equations for complex functions -- The definite integral. Higher-order infinitesimals -- The definite integral -- Higher-order infinitesimals and Taylor's theorem -- The three natural microneighbourhoods of zero -- Synthetic differential geometry -- Tangent vectors and tangent spaces -- Vector fields -- Differentials and directional derivatives -- Smooth infinitesimal analysis as an axiomatic system -- Natural numbers in smooth worlds -- Nonstandard analysis. |
ctrlnum | (OCoLC)316764804 |
dewey-full | 515 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515 |
dewey-search | 515 |
dewey-sort | 3515 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
edition | 2nd ed. |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>05282cam a2200637 a 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn316764804</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cnu---unuuu</controlfield><controlfield tag="008">090322s2008 enka ob 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">N$T</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">N$T</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">CDX</subfield><subfield code="d">IDEBK</subfield><subfield code="d">OSU</subfield><subfield code="d">E7B</subfield><subfield code="d">REDDC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCF</subfield><subfield code="d">YDXCP</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">UAB</subfield><subfield code="d">STF</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OL$</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">302061863</subfield><subfield code="a">316329577</subfield><subfield code="a">646780848</subfield><subfield code="a">957339573</subfield><subfield code="a">1035710123</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511371431</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0511371438</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0511370962</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511370960</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780521887182</subfield><subfield code="q">(hardback)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0521887186</subfield><subfield code="q">(hardback)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511369957</subfield><subfield code="q">(ebook)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0511369956</subfield><subfield code="q">(ebook)</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)316764804</subfield><subfield code="z">(OCoLC)302061863</subfield><subfield code="z">(OCoLC)316329577</subfield><subfield code="z">(OCoLC)646780848</subfield><subfield code="z">(OCoLC)957339573</subfield><subfield code="z">(OCoLC)1035710123</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA299.82</subfield><subfield code="b">.B45 2008eb</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">005000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">034000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">515</subfield><subfield code="2">22</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Bell, J. L.</subfield><subfield code="q">(John Lane)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PBJvMyh4bFf7yMqKkYvcdcP</subfield><subfield code="0">http://id.loc.gov/authorities/names/n50006514</subfield></datafield><datafield tag="245" ind1="1" ind2="2"><subfield code="a">A primer of infinitesimal analysis /</subfield><subfield code="c">John L. Bell.</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">2nd ed.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">Cambridge ;</subfield><subfield code="a">New York :</subfield><subfield code="b">Cambridge University Press,</subfield><subfield code="c">©2008.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xi, 124 pages) :</subfield><subfield code="b">illustrations</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (pages 121-122) and index.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Basic features of smooth worlds -- Basic differential calculus -- The derivative of a function -- Stationary points of functions -- Areas under curves and the constancy principle -- The special functions -- First applications of the differential calculus -- Areas and volumes -- Volumes of revolution -- Arc length; surfaces of revolution; curvature -- Application to physics -- Moments of inertia -- Centres of mass -- Pappus' theorems -- Centres of pressure -- Stretching a spring -- Flexure of beams -- The catenary, the loaded chain, and the bollard-rope -- The Kepler-Newton areal law of motion under a central force -- Multivariable calculus and applications -- Partial derivatives -- Stationary values of functions -- Theory of surfaces. Spacetime metrics -- The heat equation -- The basic equations of hydrodynamics -- The wave equation -- The Cauchy-Riemann equations for complex functions -- The definite integral. Higher-order infinitesimals -- The definite integral -- Higher-order infinitesimals and Taylor's theorem -- The three natural microneighbourhoods of zero -- Synthetic differential geometry -- Tangent vectors and tangent spaces -- Vector fields -- Differentials and directional derivatives -- Smooth infinitesimal analysis as an axiomatic system -- Natural numbers in smooth worlds -- Nonstandard analysis.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">One of the most remarkable recent occurrences in mathematics is the refounding, on a rigorous basis, of the idea of infinitesimal quantity, a notion which played an important role in the early development of the calculus and mathematical analysis. In this new edition basic calculus, together with some of its applications to simple physical problems, are presented through the use of a straightforward, rigorous, axiomatically formulated concept of 'zero-square', or 'nilpotent' infinitesimal - that is, a quantity so small that its square and all higher powers can be set, literally, to zero. The systematic employment of these infinitesimals reduces the differential calculus to simple algebra and, at the same time, restores to use the "infinitesimal" methods figuring in traditional applications of the calculus to physical problems - a number of which are discussed in this book. This edition also contains an expanded historical and philosophical introduction</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Nonstandard mathematical analysis.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85082118</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Analyse mathématique non standard.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Calculus.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Mathematical Analysis.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Nonstandard mathematical analysis</subfield><subfield code="2">fast</subfield></datafield><datafield tag="758" ind1=" " ind2=" "><subfield code="i">has work:</subfield><subfield code="a">A primer of infinitesimal analysis (Text)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCGPm66XpwYw4J8m94VcJTb</subfield><subfield code="4">https://id.oclc.org/worldcat/ontology/hasWork</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Bell, J.L. (John Lane).</subfield><subfield code="t">Primer of infinitesimal analysis.</subfield><subfield code="b">2nd ed.</subfield><subfield code="d">Cambridge ; New York : Cambridge University Press, ©2008</subfield><subfield code="z">9780521887182</subfield><subfield code="z">0521887186</subfield><subfield code="w">(DLC) 2007035724</subfield><subfield code="w">(OCoLC)167516052</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=259166</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Coutts Information Services</subfield><subfield code="b">COUT</subfield><subfield code="n">9530214</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ebrary</subfield><subfield code="b">EBRY</subfield><subfield code="n">ebr10265010</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">259166</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest MyiLibrary Digital eBook Collection</subfield><subfield code="b">IDEB</subfield><subfield code="n">194443</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">2985367</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">3279365</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">2914299</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">2953224</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn316764804 |
illustrated | Illustrated |
indexdate | 2024-11-27T13:16:43Z |
institution | BVB |
isbn | 9780511371431 0511371438 0511370962 9780511370960 9780521887182 0521887186 9780511369957 0511369956 |
language | English |
oclc_num | 316764804 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (xi, 124 pages) : illustrations |
psigel | ZDB-4-EBA |
publishDate | 2008 |
publishDateSearch | 2008 |
publishDateSort | 2008 |
publisher | Cambridge University Press, |
record_format | marc |
spelling | Bell, J. L. (John Lane) https://id.oclc.org/worldcat/entity/E39PBJvMyh4bFf7yMqKkYvcdcP http://id.loc.gov/authorities/names/n50006514 A primer of infinitesimal analysis / John L. Bell. 2nd ed. Cambridge ; New York : Cambridge University Press, ©2008. 1 online resource (xi, 124 pages) : illustrations text txt rdacontent computer c rdamedia online resource cr rdacarrier Includes bibliographical references (pages 121-122) and index. Basic features of smooth worlds -- Basic differential calculus -- The derivative of a function -- Stationary points of functions -- Areas under curves and the constancy principle -- The special functions -- First applications of the differential calculus -- Areas and volumes -- Volumes of revolution -- Arc length; surfaces of revolution; curvature -- Application to physics -- Moments of inertia -- Centres of mass -- Pappus' theorems -- Centres of pressure -- Stretching a spring -- Flexure of beams -- The catenary, the loaded chain, and the bollard-rope -- The Kepler-Newton areal law of motion under a central force -- Multivariable calculus and applications -- Partial derivatives -- Stationary values of functions -- Theory of surfaces. Spacetime metrics -- The heat equation -- The basic equations of hydrodynamics -- The wave equation -- The Cauchy-Riemann equations for complex functions -- The definite integral. Higher-order infinitesimals -- The definite integral -- Higher-order infinitesimals and Taylor's theorem -- The three natural microneighbourhoods of zero -- Synthetic differential geometry -- Tangent vectors and tangent spaces -- Vector fields -- Differentials and directional derivatives -- Smooth infinitesimal analysis as an axiomatic system -- Natural numbers in smooth worlds -- Nonstandard analysis. Print version record. One of the most remarkable recent occurrences in mathematics is the refounding, on a rigorous basis, of the idea of infinitesimal quantity, a notion which played an important role in the early development of the calculus and mathematical analysis. In this new edition basic calculus, together with some of its applications to simple physical problems, are presented through the use of a straightforward, rigorous, axiomatically formulated concept of 'zero-square', or 'nilpotent' infinitesimal - that is, a quantity so small that its square and all higher powers can be set, literally, to zero. The systematic employment of these infinitesimals reduces the differential calculus to simple algebra and, at the same time, restores to use the "infinitesimal" methods figuring in traditional applications of the calculus to physical problems - a number of which are discussed in this book. This edition also contains an expanded historical and philosophical introduction Nonstandard mathematical analysis. http://id.loc.gov/authorities/subjects/sh85082118 Analyse mathématique non standard. MATHEMATICS Calculus. bisacsh MATHEMATICS Mathematical Analysis. bisacsh Nonstandard mathematical analysis fast has work: A primer of infinitesimal analysis (Text) https://id.oclc.org/worldcat/entity/E39PCGPm66XpwYw4J8m94VcJTb https://id.oclc.org/worldcat/ontology/hasWork Print version: Bell, J.L. (John Lane). Primer of infinitesimal analysis. 2nd ed. Cambridge ; New York : Cambridge University Press, ©2008 9780521887182 0521887186 (DLC) 2007035724 (OCoLC)167516052 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=259166 Volltext |
spellingShingle | Bell, J. L. (John Lane) A primer of infinitesimal analysis / Basic features of smooth worlds -- Basic differential calculus -- The derivative of a function -- Stationary points of functions -- Areas under curves and the constancy principle -- The special functions -- First applications of the differential calculus -- Areas and volumes -- Volumes of revolution -- Arc length; surfaces of revolution; curvature -- Application to physics -- Moments of inertia -- Centres of mass -- Pappus' theorems -- Centres of pressure -- Stretching a spring -- Flexure of beams -- The catenary, the loaded chain, and the bollard-rope -- The Kepler-Newton areal law of motion under a central force -- Multivariable calculus and applications -- Partial derivatives -- Stationary values of functions -- Theory of surfaces. Spacetime metrics -- The heat equation -- The basic equations of hydrodynamics -- The wave equation -- The Cauchy-Riemann equations for complex functions -- The definite integral. Higher-order infinitesimals -- The definite integral -- Higher-order infinitesimals and Taylor's theorem -- The three natural microneighbourhoods of zero -- Synthetic differential geometry -- Tangent vectors and tangent spaces -- Vector fields -- Differentials and directional derivatives -- Smooth infinitesimal analysis as an axiomatic system -- Natural numbers in smooth worlds -- Nonstandard analysis. Nonstandard mathematical analysis. http://id.loc.gov/authorities/subjects/sh85082118 Analyse mathématique non standard. MATHEMATICS Calculus. bisacsh MATHEMATICS Mathematical Analysis. bisacsh Nonstandard mathematical analysis fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh85082118 |
title | A primer of infinitesimal analysis / |
title_auth | A primer of infinitesimal analysis / |
title_exact_search | A primer of infinitesimal analysis / |
title_full | A primer of infinitesimal analysis / John L. Bell. |
title_fullStr | A primer of infinitesimal analysis / John L. Bell. |
title_full_unstemmed | A primer of infinitesimal analysis / John L. Bell. |
title_short | A primer of infinitesimal analysis / |
title_sort | primer of infinitesimal analysis |
topic | Nonstandard mathematical analysis. http://id.loc.gov/authorities/subjects/sh85082118 Analyse mathématique non standard. MATHEMATICS Calculus. bisacsh MATHEMATICS Mathematical Analysis. bisacsh Nonstandard mathematical analysis fast |
topic_facet | Nonstandard mathematical analysis. Analyse mathématique non standard. MATHEMATICS Calculus. MATHEMATICS Mathematical Analysis. Nonstandard mathematical analysis |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=259166 |
work_keys_str_mv | AT belljl aprimerofinfinitesimalanalysis AT belljl primerofinfinitesimalanalysis |