One-dimensional Functional Equations:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Basel
Birkhäuser Basel
2003
|
Schriftenreihe: | Operator Theory: Advances and Applications
144 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | This monograph is devoted to the study of functional equations g(x, <p(x), <p(Fl(X)), ... , <p(Fn(x))) = 0, x E M, (0.1) where M is either the real line lR or the unit circle lI', lR 1 is a given mapping. k We assume that the mappings f, F1, ... , Fn are of a class C , k E NU{ 00, ~}. According to the standard definition CO(M) is the class of continuous functions on M; Ck(M) with 0 < k < 00 consists of k-times continuously differentiable functions on M; COO(M) = n Ck(M) l |
Beschreibung: | 1 Online-Ressource (XIV, 207 p) |
ISBN: | 9783034880794 9783034894319 |
DOI: | 10.1007/978-3-0348-8079-4 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042422033 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s2003 |||| o||u| ||||||eng d | ||
020 | |a 9783034880794 |c Online |9 978-3-0348-8079-4 | ||
020 | |a 9783034894319 |c Print |9 978-3-0348-9431-9 | ||
024 | 7 | |a 10.1007/978-3-0348-8079-4 |2 doi | |
035 | |a (OCoLC)863815926 | ||
035 | |a (DE-599)BVBBV042422033 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 515.39 |2 23 | |
082 | 0 | |a 515.48 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Belitskii, Genrich |e Verfasser |4 aut | |
245 | 1 | 0 | |a One-dimensional Functional Equations |c by Genrich Belitskii, Vadim Tkachenko |
264 | 1 | |a Basel |b Birkhäuser Basel |c 2003 | |
300 | |a 1 Online-Ressource (XIV, 207 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Operator Theory: Advances and Applications |v 144 | |
500 | |a This monograph is devoted to the study of functional equations g(x, <p(x), <p(Fl(X)), ... , <p(Fn(x))) = 0, x E M, (0.1) where M is either the real line lR or the unit circle lI', lR 1 is a given mapping. k We assume that the mappings f, F1, ... , Fn are of a class C , k E NU{ 00, ~}. According to the standard definition CO(M) is the class of continuous functions on M; Ck(M) with 0 < k < 00 consists of k-times continuously differentiable functions on M; COO(M) = n Ck(M) l | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Differentiable dynamical systems | |
650 | 4 | |a Functional analysis | |
650 | 4 | |a Global analysis | |
650 | 4 | |a Operator theory | |
650 | 4 | |a Dynamical Systems and Ergodic Theory | |
650 | 4 | |a Functional Analysis | |
650 | 4 | |a Global Analysis and Analysis on Manifolds | |
650 | 4 | |a Operator Theory | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Dimension 1 |0 (DE-588)4323094-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Funktionalgleichung |0 (DE-588)4018923-5 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Funktionalgleichung |0 (DE-588)4018923-5 |D s |
689 | 0 | 1 | |a Dimension 1 |0 (DE-588)4323094-5 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
700 | 1 | |a Tkachenko, Vadim |e Sonstige |4 oth | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-0348-8079-4 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027857450 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153095869956096 |
---|---|
any_adam_object | |
author | Belitskii, Genrich |
author_facet | Belitskii, Genrich |
author_role | aut |
author_sort | Belitskii, Genrich |
author_variant | g b gb |
building | Verbundindex |
bvnumber | BV042422033 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)863815926 (DE-599)BVBBV042422033 |
dewey-full | 515.39 515.48 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515.39 515.48 |
dewey-search | 515.39 515.48 |
dewey-sort | 3515.39 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-3-0348-8079-4 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02465nmm a2200577zcb4500</leader><controlfield tag="001">BV042422033</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s2003 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783034880794</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-0348-8079-4</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783034894319</subfield><subfield code="c">Print</subfield><subfield code="9">978-3-0348-9431-9</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-0348-8079-4</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)863815926</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042422033</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515.39</subfield><subfield code="2">23</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515.48</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Belitskii, Genrich</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">One-dimensional Functional Equations</subfield><subfield code="c">by Genrich Belitskii, Vadim Tkachenko</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Basel</subfield><subfield code="b">Birkhäuser Basel</subfield><subfield code="c">2003</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XIV, 207 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Operator Theory: Advances and Applications</subfield><subfield code="v">144</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">This monograph is devoted to the study of functional equations g(x, <p(x), <p(Fl(X)), ... , <p(Fn(x))) = 0, x E M, (0.1) where M is either the real line lR or the unit circle lI', lR 1 is a given mapping. k We assume that the mappings f, F1, ... , Fn are of a class C , k E NU{ 00, ~}. According to the standard definition CO(M) is the class of continuous functions on M; Ck(M) with 0 < k < 00 consists of k-times continuously differentiable functions on M; COO(M) = n Ck(M) l</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differentiable dynamical systems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Functional analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Global analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Operator theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Dynamical Systems and Ergodic Theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Functional Analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Global Analysis and Analysis on Manifolds</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Operator Theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Dimension 1</subfield><subfield code="0">(DE-588)4323094-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Funktionalgleichung</subfield><subfield code="0">(DE-588)4018923-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Funktionalgleichung</subfield><subfield code="0">(DE-588)4018923-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Dimension 1</subfield><subfield code="0">(DE-588)4323094-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tkachenko, Vadim</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-0348-8079-4</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027857450</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042422033 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:10Z |
institution | BVB |
isbn | 9783034880794 9783034894319 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027857450 |
oclc_num | 863815926 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (XIV, 207 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 2003 |
publishDateSearch | 2003 |
publishDateSort | 2003 |
publisher | Birkhäuser Basel |
record_format | marc |
series2 | Operator Theory: Advances and Applications |
spelling | Belitskii, Genrich Verfasser aut One-dimensional Functional Equations by Genrich Belitskii, Vadim Tkachenko Basel Birkhäuser Basel 2003 1 Online-Ressource (XIV, 207 p) txt rdacontent c rdamedia cr rdacarrier Operator Theory: Advances and Applications 144 This monograph is devoted to the study of functional equations g(x, <p(x), <p(Fl(X)), ... , <p(Fn(x))) = 0, x E M, (0.1) where M is either the real line lR or the unit circle lI', lR 1 is a given mapping. k We assume that the mappings f, F1, ... , Fn are of a class C , k E NU{ 00, ~}. According to the standard definition CO(M) is the class of continuous functions on M; Ck(M) with 0 < k < 00 consists of k-times continuously differentiable functions on M; COO(M) = n Ck(M) l Mathematics Differentiable dynamical systems Functional analysis Global analysis Operator theory Dynamical Systems and Ergodic Theory Functional Analysis Global Analysis and Analysis on Manifolds Operator Theory Mathematik Dimension 1 (DE-588)4323094-5 gnd rswk-swf Funktionalgleichung (DE-588)4018923-5 gnd rswk-swf Funktionalgleichung (DE-588)4018923-5 s Dimension 1 (DE-588)4323094-5 s 1\p DE-604 Tkachenko, Vadim Sonstige oth https://doi.org/10.1007/978-3-0348-8079-4 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Belitskii, Genrich One-dimensional Functional Equations Mathematics Differentiable dynamical systems Functional analysis Global analysis Operator theory Dynamical Systems and Ergodic Theory Functional Analysis Global Analysis and Analysis on Manifolds Operator Theory Mathematik Dimension 1 (DE-588)4323094-5 gnd Funktionalgleichung (DE-588)4018923-5 gnd |
subject_GND | (DE-588)4323094-5 (DE-588)4018923-5 |
title | One-dimensional Functional Equations |
title_auth | One-dimensional Functional Equations |
title_exact_search | One-dimensional Functional Equations |
title_full | One-dimensional Functional Equations by Genrich Belitskii, Vadim Tkachenko |
title_fullStr | One-dimensional Functional Equations by Genrich Belitskii, Vadim Tkachenko |
title_full_unstemmed | One-dimensional Functional Equations by Genrich Belitskii, Vadim Tkachenko |
title_short | One-dimensional Functional Equations |
title_sort | one dimensional functional equations |
topic | Mathematics Differentiable dynamical systems Functional analysis Global analysis Operator theory Dynamical Systems and Ergodic Theory Functional Analysis Global Analysis and Analysis on Manifolds Operator Theory Mathematik Dimension 1 (DE-588)4323094-5 gnd Funktionalgleichung (DE-588)4018923-5 gnd |
topic_facet | Mathematics Differentiable dynamical systems Functional analysis Global analysis Operator theory Dynamical Systems and Ergodic Theory Functional Analysis Global Analysis and Analysis on Manifolds Operator Theory Mathematik Dimension 1 Funktionalgleichung |
url | https://doi.org/10.1007/978-3-0348-8079-4 |
work_keys_str_mv | AT belitskiigenrich onedimensionalfunctionalequations AT tkachenkovadim onedimensionalfunctionalequations |