Nonlinear dynamics of interacting populations:
"This book contains a systematic study of ecological communities of two or three interacting populations. Starting from the Lotka–Volterra system, various regulating factors are considered, such as rates of birth and death, predation and competition. The different factors can have a stabilizing...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Singapore
World Scientific Pub. Co.
c1998
|
Schriftenreihe: | World scientific series on non-linear science, Series A
vol. 11 |
Schlagworte: | |
Online-Zugang: | FHN01 Volltext |
Zusammenfassung: | "This book contains a systematic study of ecological communities of two or three interacting populations. Starting from the Lotka–Volterra system, various regulating factors are considered, such as rates of birth and death, predation and competition. The different factors can have a stabilizing or a destabilizing effect on the community, and their interplay leads to increasingly complicated behavior. Studying and understanding this path to greater dynamical complexity of ecological systems constitutes the backbone of this book. On the mathematical side, the tool of choice is the qualitative theory of dynamical systems — most importantly bifurcation theory, which describes the dependence of a system on the parameters. This approach allows one to find general patterns of behavior that are expected to be observed in ecological models. Of special interest is the reaction of a given model to disturbances of its present state, as well as to changes in the external conditions. This leads to the general idea of "dangerous boundaries" in the state and parameter space of an ecological system. The study of these boundaries allows one to analyze and predict qualitative and often sudden changes of the dynamics — a much-needed tool, given the increasing antropogenic load on the biosphere.As a spin-off from this approach, the book can be used as a guided tour of bifurcation theory from the viewpoint of application. The interested reader will find a wealth of intriguing examples of how known bifurcations occur in applications. The book can in fact be seen as bridging the gap between mathematical biology and bifurcation theory." |
Beschreibung: | vii, 193 p. ill |
ISBN: | 9789812798725 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV044635979 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 171120s1998 |||| o||u| ||||||eng d | ||
020 | |a 9789812798725 |9 978-981-279-872-5 | ||
024 | 7 | |a 10.1142/2284 |2 doi | |
035 | |a (ZDB-124-WOP)00004510 | ||
035 | |a (OCoLC)1012664100 | ||
035 | |a (DE-599)BVBBV044635979 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-92 | ||
082 | 0 | |a 577.8/8/0151 |2 22 | |
084 | |a SK 870 |0 (DE-625)143265: |2 rvk | ||
100 | 1 | |a Bazykin, A. D. |e Verfasser |4 aut | |
240 | 1 | 0 | |a Matematicheskai͡a biofizika vzaimodeĭstvui͡ushchikh populi͡at͡siĭ |
245 | 1 | 0 | |a Nonlinear dynamics of interacting populations |c Alexander D. Bazykin ; edited by Alexander I. Khibnik, Bernd Krauskopf |
264 | 1 | |a Singapore |b World Scientific Pub. Co. |c c1998 | |
300 | |a vii, 193 p. |b ill | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a World scientific series on non-linear science, Series A |v vol. 11 | |
520 | |a "This book contains a systematic study of ecological communities of two or three interacting populations. Starting from the Lotka–Volterra system, various regulating factors are considered, such as rates of birth and death, predation and competition. The different factors can have a stabilizing or a destabilizing effect on the community, and their interplay leads to increasingly complicated behavior. Studying and understanding this path to greater dynamical complexity of ecological systems constitutes the backbone of this book. On the mathematical side, the tool of choice is the qualitative theory of dynamical systems — most importantly bifurcation theory, which describes the dependence of a system on the parameters. This approach allows one to find general patterns of behavior that are expected to be observed in ecological models. Of special interest is the reaction of a given model to disturbances of its present state, as well as to changes in the external conditions. This leads to the general idea of "dangerous boundaries" in the state and parameter space of an ecological system. The study of these boundaries allows one to analyze and predict qualitative and often sudden changes of the dynamics — a much-needed tool, given the increasing antropogenic load on the biosphere.As a spin-off from this approach, the book can be used as a guided tour of bifurcation theory from the viewpoint of application. The interested reader will find a wealth of intriguing examples of how known bifurcations occur in applications. The book can in fact be seen as bridging the gap between mathematical biology and bifurcation theory." | ||
650 | 4 | |a Population biology / Mathematical models | |
650 | 4 | |a Biotic communities / Mathematical models | |
650 | 4 | |a Bifurcation theory | |
700 | 1 | |a Khibnik, A. I. |e Sonstige |4 oth | |
700 | 1 | |a Krauskopf, Bernd |e Sonstige |4 oth | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9789810216856 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9810216858 |
856 | 4 | 0 | |u http://www.worldscientific.com/worldscibooks/10.1142/2284#t=toc |x Verlag |z URL des Erstveroeffentlichers |3 Volltext |
912 | |a ZDB-124-WOP | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-030033951 | ||
966 | e | |u http://www.worldscientific.com/worldscibooks/10.1142/2284#t=toc |l FHN01 |p ZDB-124-WOP |q FHN_PDA_WOP |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804178049727463424 |
---|---|
any_adam_object | |
author | Bazykin, A. D. |
author_facet | Bazykin, A. D. |
author_role | aut |
author_sort | Bazykin, A. D. |
author_variant | a d b ad adb |
building | Verbundindex |
bvnumber | BV044635979 |
classification_rvk | SK 870 |
collection | ZDB-124-WOP |
ctrlnum | (ZDB-124-WOP)00004510 (OCoLC)1012664100 (DE-599)BVBBV044635979 |
dewey-full | 577.8/8/0151 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 577 - Ecology |
dewey-raw | 577.8/8/0151 |
dewey-search | 577.8/8/0151 |
dewey-sort | 3577.8 18 3151 |
dewey-tens | 570 - Biology |
discipline | Biologie Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03433nmm a2200457zcb4500</leader><controlfield tag="001">BV044635979</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">171120s1998 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789812798725</subfield><subfield code="9">978-981-279-872-5</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1142/2284</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-124-WOP)00004510</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1012664100</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV044635979</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">577.8/8/0151</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 870</subfield><subfield code="0">(DE-625)143265:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Bazykin, A. D.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="240" ind1="1" ind2="0"><subfield code="a">Matematicheskai͡a biofizika vzaimodeĭstvui͡ushchikh populi͡at͡siĭ</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Nonlinear dynamics of interacting populations</subfield><subfield code="c">Alexander D. Bazykin ; edited by Alexander I. Khibnik, Bernd Krauskopf</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Singapore</subfield><subfield code="b">World Scientific Pub. Co.</subfield><subfield code="c">c1998</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">vii, 193 p.</subfield><subfield code="b">ill</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">World scientific series on non-linear science, Series A</subfield><subfield code="v">vol. 11</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">"This book contains a systematic study of ecological communities of two or three interacting populations. Starting from the Lotka–Volterra system, various regulating factors are considered, such as rates of birth and death, predation and competition. The different factors can have a stabilizing or a destabilizing effect on the community, and their interplay leads to increasingly complicated behavior. Studying and understanding this path to greater dynamical complexity of ecological systems constitutes the backbone of this book. On the mathematical side, the tool of choice is the qualitative theory of dynamical systems — most importantly bifurcation theory, which describes the dependence of a system on the parameters. This approach allows one to find general patterns of behavior that are expected to be observed in ecological models. Of special interest is the reaction of a given model to disturbances of its present state, as well as to changes in the external conditions. This leads to the general idea of "dangerous boundaries" in the state and parameter space of an ecological system. The study of these boundaries allows one to analyze and predict qualitative and often sudden changes of the dynamics — a much-needed tool, given the increasing antropogenic load on the biosphere.As a spin-off from this approach, the book can be used as a guided tour of bifurcation theory from the viewpoint of application. The interested reader will find a wealth of intriguing examples of how known bifurcations occur in applications. The book can in fact be seen as bridging the gap between mathematical biology and bifurcation theory."</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Population biology / Mathematical models</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Biotic communities / Mathematical models</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Bifurcation theory</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Khibnik, A. I.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Krauskopf, Bernd</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9789810216856</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9810216858</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.worldscientific.com/worldscibooks/10.1142/2284#t=toc</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveroeffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-124-WOP</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-030033951</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://www.worldscientific.com/worldscibooks/10.1142/2284#t=toc</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-124-WOP</subfield><subfield code="q">FHN_PDA_WOP</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV044635979 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:57:48Z |
institution | BVB |
isbn | 9789812798725 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-030033951 |
oclc_num | 1012664100 |
open_access_boolean | |
owner | DE-92 |
owner_facet | DE-92 |
physical | vii, 193 p. ill |
psigel | ZDB-124-WOP ZDB-124-WOP FHN_PDA_WOP |
publishDate | 1998 |
publishDateSearch | 1998 |
publishDateSort | 1998 |
publisher | World Scientific Pub. Co. |
record_format | marc |
series2 | World scientific series on non-linear science, Series A |
spelling | Bazykin, A. D. Verfasser aut Matematicheskai͡a biofizika vzaimodeĭstvui͡ushchikh populi͡at͡siĭ Nonlinear dynamics of interacting populations Alexander D. Bazykin ; edited by Alexander I. Khibnik, Bernd Krauskopf Singapore World Scientific Pub. Co. c1998 vii, 193 p. ill txt rdacontent c rdamedia cr rdacarrier World scientific series on non-linear science, Series A vol. 11 "This book contains a systematic study of ecological communities of two or three interacting populations. Starting from the Lotka–Volterra system, various regulating factors are considered, such as rates of birth and death, predation and competition. The different factors can have a stabilizing or a destabilizing effect on the community, and their interplay leads to increasingly complicated behavior. Studying and understanding this path to greater dynamical complexity of ecological systems constitutes the backbone of this book. On the mathematical side, the tool of choice is the qualitative theory of dynamical systems — most importantly bifurcation theory, which describes the dependence of a system on the parameters. This approach allows one to find general patterns of behavior that are expected to be observed in ecological models. Of special interest is the reaction of a given model to disturbances of its present state, as well as to changes in the external conditions. This leads to the general idea of "dangerous boundaries" in the state and parameter space of an ecological system. The study of these boundaries allows one to analyze and predict qualitative and often sudden changes of the dynamics — a much-needed tool, given the increasing antropogenic load on the biosphere.As a spin-off from this approach, the book can be used as a guided tour of bifurcation theory from the viewpoint of application. The interested reader will find a wealth of intriguing examples of how known bifurcations occur in applications. The book can in fact be seen as bridging the gap between mathematical biology and bifurcation theory." Population biology / Mathematical models Biotic communities / Mathematical models Bifurcation theory Khibnik, A. I. Sonstige oth Krauskopf, Bernd Sonstige oth Erscheint auch als Druck-Ausgabe 9789810216856 Erscheint auch als Druck-Ausgabe 9810216858 http://www.worldscientific.com/worldscibooks/10.1142/2284#t=toc Verlag URL des Erstveroeffentlichers Volltext |
spellingShingle | Bazykin, A. D. Nonlinear dynamics of interacting populations Population biology / Mathematical models Biotic communities / Mathematical models Bifurcation theory |
title | Nonlinear dynamics of interacting populations |
title_alt | Matematicheskai͡a biofizika vzaimodeĭstvui͡ushchikh populi͡at͡siĭ |
title_auth | Nonlinear dynamics of interacting populations |
title_exact_search | Nonlinear dynamics of interacting populations |
title_full | Nonlinear dynamics of interacting populations Alexander D. Bazykin ; edited by Alexander I. Khibnik, Bernd Krauskopf |
title_fullStr | Nonlinear dynamics of interacting populations Alexander D. Bazykin ; edited by Alexander I. Khibnik, Bernd Krauskopf |
title_full_unstemmed | Nonlinear dynamics of interacting populations Alexander D. Bazykin ; edited by Alexander I. Khibnik, Bernd Krauskopf |
title_short | Nonlinear dynamics of interacting populations |
title_sort | nonlinear dynamics of interacting populations |
topic | Population biology / Mathematical models Biotic communities / Mathematical models Bifurcation theory |
topic_facet | Population biology / Mathematical models Biotic communities / Mathematical models Bifurcation theory |
url | http://www.worldscientific.com/worldscibooks/10.1142/2284#t=toc |
work_keys_str_mv | AT bazykinad matematicheskaiabiofizikavzaimodeistvuiushchikhpopuliatsii AT khibnikai matematicheskaiabiofizikavzaimodeistvuiushchikhpopuliatsii AT krauskopfbernd matematicheskaiabiofizikavzaimodeistvuiushchikhpopuliatsii AT bazykinad nonlineardynamicsofinteractingpopulations AT khibnikai nonlineardynamicsofinteractingpopulations AT krauskopfbernd nonlineardynamicsofinteractingpopulations |