A recursion planning analysis of inductive completion:
Abstract: "We use the AI proof planning techniques of recursion analysis and rippling as tools to analyze inductive completion or so called inductionless induction proof techniques. Recursion analysis chooses induction schemas and variables and rippling controls post- induction rewriting in exp...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Edinburgh
1991
|
Schriftenreihe: | University <Edinburgh> / Department of Artificial Intelligence: DAI research paper
518 |
Schlagworte: | |
Zusammenfassung: | Abstract: "We use the AI proof planning techniques of recursion analysis and rippling as tools to analyze inductive completion or so called inductionless induction proof techniques. Recursion analysis chooses induction schemas and variables and rippling controls post- induction rewriting in explicit induction proofs. They provide a theoretical basis for explaining the success and failure of inductionless induction both in generating conflatable critical pairs (which correspond to induction schemas) and in the simplification of these pairs (which corresponds to post-induction proof) Furthermore, these explicit induction techniques motivate and provide insight into recent improvements in inductive completion algorithms and suggest directions for futhur improvements. Our study also includes an experimental comparison of Clam, an explicit induction theorem prover, with an implementation of Huet and Hullot's inductionless induction. |
Beschreibung: | 20 S. |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV010453221 | ||
003 | DE-604 | ||
005 | 19951030 | ||
007 | t | ||
008 | 951027s1991 |||| 00||| engod | ||
035 | |a (OCoLC)25783832 | ||
035 | |a (DE-599)BVBBV010453221 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
049 | |a DE-91G | ||
100 | 1 | |a Barnett, R. |e Verfasser |4 aut | |
245 | 1 | 0 | |a A recursion planning analysis of inductive completion |c R. Barnett ; D. Basin ; J. Hesketh |
264 | 1 | |a Edinburgh |c 1991 | |
300 | |a 20 S. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a University <Edinburgh> / Department of Artificial Intelligence: DAI research paper |v 518 | |
520 | 3 | |a Abstract: "We use the AI proof planning techniques of recursion analysis and rippling as tools to analyze inductive completion or so called inductionless induction proof techniques. Recursion analysis chooses induction schemas and variables and rippling controls post- induction rewriting in explicit induction proofs. They provide a theoretical basis for explaining the success and failure of inductionless induction both in generating conflatable critical pairs (which correspond to induction schemas) and in the simplification of these pairs (which corresponds to post-induction proof) | |
520 | 3 | |a Furthermore, these explicit induction techniques motivate and provide insight into recent improvements in inductive completion algorithms and suggest directions for futhur improvements. Our study also includes an experimental comparison of Clam, an explicit induction theorem prover, with an implementation of Huet and Hullot's inductionless induction. | |
650 | 7 | |a Bionics and artificial intelligence |2 sigle | |
650 | 7 | |a Mathematics |2 sigle | |
650 | 4 | |a Mathematik | |
650 | 4 | |a Automatic theorem proving | |
650 | 4 | |a Reasoning | |
700 | 1 | |a Basin, D. |e Verfasser |4 aut | |
700 | 1 | |a Hesketh, Jane |e Verfasser |4 aut | |
810 | 2 | |a Department of Artificial Intelligence: DAI research paper |t University <Edinburgh> |v 518 |w (DE-604)BV010450646 |9 518 | |
999 | |a oai:aleph.bib-bvb.de:BVB01-006965995 |
Datensatz im Suchindex
_version_ | 1804124886604447744 |
---|---|
any_adam_object | |
author | Barnett, R. Basin, D. Hesketh, Jane |
author_facet | Barnett, R. Basin, D. Hesketh, Jane |
author_role | aut aut aut |
author_sort | Barnett, R. |
author_variant | r b rb d b db j h jh |
building | Verbundindex |
bvnumber | BV010453221 |
ctrlnum | (OCoLC)25783832 (DE-599)BVBBV010453221 |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02151nam a2200373 cb4500</leader><controlfield tag="001">BV010453221</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">19951030 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">951027s1991 |||| 00||| engod</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)25783832</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV010453221</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91G</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Barnett, R.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A recursion planning analysis of inductive completion</subfield><subfield code="c">R. Barnett ; D. Basin ; J. Hesketh</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Edinburgh</subfield><subfield code="c">1991</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">20 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">University <Edinburgh> / Department of Artificial Intelligence: DAI research paper</subfield><subfield code="v">518</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">Abstract: "We use the AI proof planning techniques of recursion analysis and rippling as tools to analyze inductive completion or so called inductionless induction proof techniques. Recursion analysis chooses induction schemas and variables and rippling controls post- induction rewriting in explicit induction proofs. They provide a theoretical basis for explaining the success and failure of inductionless induction both in generating conflatable critical pairs (which correspond to induction schemas) and in the simplification of these pairs (which corresponds to post-induction proof)</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">Furthermore, these explicit induction techniques motivate and provide insight into recent improvements in inductive completion algorithms and suggest directions for futhur improvements. Our study also includes an experimental comparison of Clam, an explicit induction theorem prover, with an implementation of Huet and Hullot's inductionless induction.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Bionics and artificial intelligence</subfield><subfield code="2">sigle</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Mathematics</subfield><subfield code="2">sigle</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Automatic theorem proving</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Reasoning</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Basin, D.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hesketh, Jane</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="810" ind1="2" ind2=" "><subfield code="a">Department of Artificial Intelligence: DAI research paper</subfield><subfield code="t">University <Edinburgh></subfield><subfield code="v">518</subfield><subfield code="w">(DE-604)BV010450646</subfield><subfield code="9">518</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-006965995</subfield></datafield></record></collection> |
id | DE-604.BV010453221 |
illustrated | Not Illustrated |
indexdate | 2024-07-09T17:52:47Z |
institution | BVB |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-006965995 |
oclc_num | 25783832 |
open_access_boolean | |
owner | DE-91G DE-BY-TUM |
owner_facet | DE-91G DE-BY-TUM |
physical | 20 S. |
publishDate | 1991 |
publishDateSearch | 1991 |
publishDateSort | 1991 |
record_format | marc |
series2 | University <Edinburgh> / Department of Artificial Intelligence: DAI research paper |
spelling | Barnett, R. Verfasser aut A recursion planning analysis of inductive completion R. Barnett ; D. Basin ; J. Hesketh Edinburgh 1991 20 S. txt rdacontent n rdamedia nc rdacarrier University <Edinburgh> / Department of Artificial Intelligence: DAI research paper 518 Abstract: "We use the AI proof planning techniques of recursion analysis and rippling as tools to analyze inductive completion or so called inductionless induction proof techniques. Recursion analysis chooses induction schemas and variables and rippling controls post- induction rewriting in explicit induction proofs. They provide a theoretical basis for explaining the success and failure of inductionless induction both in generating conflatable critical pairs (which correspond to induction schemas) and in the simplification of these pairs (which corresponds to post-induction proof) Furthermore, these explicit induction techniques motivate and provide insight into recent improvements in inductive completion algorithms and suggest directions for futhur improvements. Our study also includes an experimental comparison of Clam, an explicit induction theorem prover, with an implementation of Huet and Hullot's inductionless induction. Bionics and artificial intelligence sigle Mathematics sigle Mathematik Automatic theorem proving Reasoning Basin, D. Verfasser aut Hesketh, Jane Verfasser aut Department of Artificial Intelligence: DAI research paper University <Edinburgh> 518 (DE-604)BV010450646 518 |
spellingShingle | Barnett, R. Basin, D. Hesketh, Jane A recursion planning analysis of inductive completion Bionics and artificial intelligence sigle Mathematics sigle Mathematik Automatic theorem proving Reasoning |
title | A recursion planning analysis of inductive completion |
title_auth | A recursion planning analysis of inductive completion |
title_exact_search | A recursion planning analysis of inductive completion |
title_full | A recursion planning analysis of inductive completion R. Barnett ; D. Basin ; J. Hesketh |
title_fullStr | A recursion planning analysis of inductive completion R. Barnett ; D. Basin ; J. Hesketh |
title_full_unstemmed | A recursion planning analysis of inductive completion R. Barnett ; D. Basin ; J. Hesketh |
title_short | A recursion planning analysis of inductive completion |
title_sort | a recursion planning analysis of inductive completion |
topic | Bionics and artificial intelligence sigle Mathematics sigle Mathematik Automatic theorem proving Reasoning |
topic_facet | Bionics and artificial intelligence Mathematics Mathematik Automatic theorem proving Reasoning |
volume_link | (DE-604)BV010450646 |
work_keys_str_mv | AT barnettr arecursionplanninganalysisofinductivecompletion AT basind arecursionplanninganalysisofinductivecompletion AT heskethjane arecursionplanninganalysisofinductivecompletion |