Dynamics of Mechanical Systems with Coulomb Friction:
This book addresses the general theory of motion of mechanical systems with Coulomb friction. In particular, the book focuses on the following specific problems: i) derivation of the equations of motion, ii) Painleve's paradoxes, iii) tangential impact and dynamic seizure, and iiii) frictional...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin, Heidelberg
Springer Berlin Heidelberg
2003
|
Schriftenreihe: | Foundations of Engineering Mechanics
|
Schlagworte: | |
Online-Zugang: | FHI01 BTU01 URL des Erstveröffentlichers |
Zusammenfassung: | This book addresses the general theory of motion of mechanical systems with Coulomb friction. In particular, the book focuses on the following specific problems: i) derivation of the equations of motion, ii) Painleve's paradoxes, iii) tangential impact and dynamic seizure, and iiii) frictional self-excited oscillations. In addition to theoretical results, the book contains a detailed description of experiments that have been performed. These show that, in general, the friction force at the instant of transition to motion is determined by the rate of tangential load and does not depend on the duration of the previous contact. These results are used to develop the theory of frictional self-excited oscillations. A number of industrially relevant mechanisms are considered, including the Painleve-Klein scheme, epicyclic mechanisms, crank mechanisms, gear transmission, the link mechanism of a planing machine, and the slider of metal-cutting machine tools. The book is intended for researchers, engineers and students in mechanical engineering |
Beschreibung: | 1 Online-Ressource (IV, 272 p) |
ISBN: | 9783540365167 |
DOI: | 10.1007/978-3-540-36516-7 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV045149142 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 180827s2003 |||| o||u| ||||||eng d | ||
020 | |a 9783540365167 |9 978-3-540-36516-7 | ||
024 | 7 | |a 10.1007/978-3-540-36516-7 |2 doi | |
035 | |a (ZDB-2-ENG)978-3-540-36516-7 | ||
035 | |a (OCoLC)1050946576 | ||
035 | |a (DE-599)BVBBV045149142 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-573 |a DE-634 | ||
082 | 0 | |a 620.1 |2 23 | |
100 | 1 | |a Anh, Le xuan |e Verfasser |4 aut | |
245 | 1 | 0 | |a Dynamics of Mechanical Systems with Coulomb Friction |c by Le xuan Anh |
264 | 1 | |a Berlin, Heidelberg |b Springer Berlin Heidelberg |c 2003 | |
300 | |a 1 Online-Ressource (IV, 272 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Foundations of Engineering Mechanics | |
520 | |a This book addresses the general theory of motion of mechanical systems with Coulomb friction. In particular, the book focuses on the following specific problems: i) derivation of the equations of motion, ii) Painleve's paradoxes, iii) tangential impact and dynamic seizure, and iiii) frictional self-excited oscillations. In addition to theoretical results, the book contains a detailed description of experiments that have been performed. These show that, in general, the friction force at the instant of transition to motion is determined by the rate of tangential load and does not depend on the duration of the previous contact. These results are used to develop the theory of frictional self-excited oscillations. A number of industrially relevant mechanisms are considered, including the Painleve-Klein scheme, epicyclic mechanisms, crank mechanisms, gear transmission, the link mechanism of a planing machine, and the slider of metal-cutting machine tools. The book is intended for researchers, engineers and students in mechanical engineering | ||
650 | 4 | |a Engineering | |
650 | 4 | |a Theoretical and Applied Mechanics | |
650 | 4 | |a Computational Intelligence | |
650 | 4 | |a Mechanics | |
650 | 4 | |a Engineering | |
650 | 4 | |a Mechanics | |
650 | 4 | |a Computational intelligence | |
650 | 4 | |a Mechanics, Applied | |
650 | 0 | 7 | |a Mechanisches System |0 (DE-588)4132811-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Coulombsches Reibungsgesetz |0 (DE-588)4371918-1 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Mechanisches System |0 (DE-588)4132811-5 |D s |
689 | 0 | 1 | |a Coulombsches Reibungsgesetz |0 (DE-588)4371918-1 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9783642056246 |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-540-36516-7 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-2-ENG | ||
940 | 1 | |q ZDB-2-ENG_2000/2004 | |
999 | |a oai:aleph.bib-bvb.de:BVB01-030538841 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u https://doi.org/10.1007/978-3-540-36516-7 |l FHI01 |p ZDB-2-ENG |q ZDB-2-ENG_2000/2004 |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-540-36516-7 |l BTU01 |p ZDB-2-ENG |q ZDB-2-ENG_Archiv |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804178820363714560 |
---|---|
any_adam_object | |
author | Anh, Le xuan |
author_facet | Anh, Le xuan |
author_role | aut |
author_sort | Anh, Le xuan |
author_variant | l x a lx lxa |
building | Verbundindex |
bvnumber | BV045149142 |
collection | ZDB-2-ENG |
ctrlnum | (ZDB-2-ENG)978-3-540-36516-7 (OCoLC)1050946576 (DE-599)BVBBV045149142 |
dewey-full | 620.1 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 620 - Engineering and allied operations |
dewey-raw | 620.1 |
dewey-search | 620.1 |
dewey-sort | 3620.1 |
dewey-tens | 620 - Engineering and allied operations |
doi_str_mv | 10.1007/978-3-540-36516-7 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03139nmm a2200553zc 4500</leader><controlfield tag="001">BV045149142</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">180827s2003 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783540365167</subfield><subfield code="9">978-3-540-36516-7</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-540-36516-7</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-2-ENG)978-3-540-36516-7</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1050946576</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV045149142</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-573</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">620.1</subfield><subfield code="2">23</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Anh, Le xuan</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Dynamics of Mechanical Systems with Coulomb Friction</subfield><subfield code="c">by Le xuan Anh</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin, Heidelberg</subfield><subfield code="b">Springer Berlin Heidelberg</subfield><subfield code="c">2003</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (IV, 272 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Foundations of Engineering Mechanics</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This book addresses the general theory of motion of mechanical systems with Coulomb friction. In particular, the book focuses on the following specific problems: i) derivation of the equations of motion, ii) Painleve's paradoxes, iii) tangential impact and dynamic seizure, and iiii) frictional self-excited oscillations. In addition to theoretical results, the book contains a detailed description of experiments that have been performed. These show that, in general, the friction force at the instant of transition to motion is determined by the rate of tangential load and does not depend on the duration of the previous contact. These results are used to develop the theory of frictional self-excited oscillations. A number of industrially relevant mechanisms are considered, including the Painleve-Klein scheme, epicyclic mechanisms, crank mechanisms, gear transmission, the link mechanism of a planing machine, and the slider of metal-cutting machine tools. The book is intended for researchers, engineers and students in mechanical engineering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Engineering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Theoretical and Applied Mechanics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computational Intelligence</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mechanics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Engineering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mechanics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computational intelligence</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mechanics, Applied</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mechanisches System</subfield><subfield code="0">(DE-588)4132811-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Coulombsches Reibungsgesetz</subfield><subfield code="0">(DE-588)4371918-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Mechanisches System</subfield><subfield code="0">(DE-588)4132811-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Coulombsches Reibungsgesetz</subfield><subfield code="0">(DE-588)4371918-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9783642056246</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-540-36516-7</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-ENG</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-ENG_2000/2004</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-030538841</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-540-36516-7</subfield><subfield code="l">FHI01</subfield><subfield code="p">ZDB-2-ENG</subfield><subfield code="q">ZDB-2-ENG_2000/2004</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-540-36516-7</subfield><subfield code="l">BTU01</subfield><subfield code="p">ZDB-2-ENG</subfield><subfield code="q">ZDB-2-ENG_Archiv</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV045149142 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T08:10:03Z |
institution | BVB |
isbn | 9783540365167 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-030538841 |
oclc_num | 1050946576 |
open_access_boolean | |
owner | DE-573 DE-634 |
owner_facet | DE-573 DE-634 |
physical | 1 Online-Ressource (IV, 272 p) |
psigel | ZDB-2-ENG ZDB-2-ENG_2000/2004 ZDB-2-ENG ZDB-2-ENG_2000/2004 ZDB-2-ENG ZDB-2-ENG_Archiv |
publishDate | 2003 |
publishDateSearch | 2003 |
publishDateSort | 2003 |
publisher | Springer Berlin Heidelberg |
record_format | marc |
series2 | Foundations of Engineering Mechanics |
spelling | Anh, Le xuan Verfasser aut Dynamics of Mechanical Systems with Coulomb Friction by Le xuan Anh Berlin, Heidelberg Springer Berlin Heidelberg 2003 1 Online-Ressource (IV, 272 p) txt rdacontent c rdamedia cr rdacarrier Foundations of Engineering Mechanics This book addresses the general theory of motion of mechanical systems with Coulomb friction. In particular, the book focuses on the following specific problems: i) derivation of the equations of motion, ii) Painleve's paradoxes, iii) tangential impact and dynamic seizure, and iiii) frictional self-excited oscillations. In addition to theoretical results, the book contains a detailed description of experiments that have been performed. These show that, in general, the friction force at the instant of transition to motion is determined by the rate of tangential load and does not depend on the duration of the previous contact. These results are used to develop the theory of frictional self-excited oscillations. A number of industrially relevant mechanisms are considered, including the Painleve-Klein scheme, epicyclic mechanisms, crank mechanisms, gear transmission, the link mechanism of a planing machine, and the slider of metal-cutting machine tools. The book is intended for researchers, engineers and students in mechanical engineering Engineering Theoretical and Applied Mechanics Computational Intelligence Mechanics Computational intelligence Mechanics, Applied Mechanisches System (DE-588)4132811-5 gnd rswk-swf Coulombsches Reibungsgesetz (DE-588)4371918-1 gnd rswk-swf Mechanisches System (DE-588)4132811-5 s Coulombsches Reibungsgesetz (DE-588)4371918-1 s 1\p DE-604 Erscheint auch als Druck-Ausgabe 9783642056246 https://doi.org/10.1007/978-3-540-36516-7 Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Anh, Le xuan Dynamics of Mechanical Systems with Coulomb Friction Engineering Theoretical and Applied Mechanics Computational Intelligence Mechanics Computational intelligence Mechanics, Applied Mechanisches System (DE-588)4132811-5 gnd Coulombsches Reibungsgesetz (DE-588)4371918-1 gnd |
subject_GND | (DE-588)4132811-5 (DE-588)4371918-1 |
title | Dynamics of Mechanical Systems with Coulomb Friction |
title_auth | Dynamics of Mechanical Systems with Coulomb Friction |
title_exact_search | Dynamics of Mechanical Systems with Coulomb Friction |
title_full | Dynamics of Mechanical Systems with Coulomb Friction by Le xuan Anh |
title_fullStr | Dynamics of Mechanical Systems with Coulomb Friction by Le xuan Anh |
title_full_unstemmed | Dynamics of Mechanical Systems with Coulomb Friction by Le xuan Anh |
title_short | Dynamics of Mechanical Systems with Coulomb Friction |
title_sort | dynamics of mechanical systems with coulomb friction |
topic | Engineering Theoretical and Applied Mechanics Computational Intelligence Mechanics Computational intelligence Mechanics, Applied Mechanisches System (DE-588)4132811-5 gnd Coulombsches Reibungsgesetz (DE-588)4371918-1 gnd |
topic_facet | Engineering Theoretical and Applied Mechanics Computational Intelligence Mechanics Computational intelligence Mechanics, Applied Mechanisches System Coulombsches Reibungsgesetz |
url | https://doi.org/10.1007/978-3-540-36516-7 |
work_keys_str_mv | AT anhlexuan dynamicsofmechanicalsystemswithcoulombfriction |