Statistical methods for recommender systems:
Designing algorithms to recommend items such as news articles and movies to users is a challenging task in numerous web applications. The crux of the problem is to rank items based on users' responses to different items to optimize for multiple objectives. Major technical challenges are high di...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
2016
|
Schlagworte: | |
Online-Zugang: | BSB01 FHN01 Volltext |
Zusammenfassung: | Designing algorithms to recommend items such as news articles and movies to users is a challenging task in numerous web applications. The crux of the problem is to rank items based on users' responses to different items to optimize for multiple objectives. Major technical challenges are high dimensional prediction with sparse data and constructing high dimensional sequential designs to collect data for user modeling and system design. This comprehensive treatment of the statistical issues that arise in recommender systems includes detailed, in-depth discussions of current state-of-the-art methods such as adaptive sequential designs (multi-armed bandit methods), bilinear random-effects models (matrix factorization) and scalable model fitting using modern computing paradigms like MapReduce. The authors draw upon their vast experience working with such large-scale systems at Yahoo! and LinkedIn, and bridge the gap between theory and practice by illustrating complex concepts with examples from applications they are directly involved with |
Beschreibung: | Title from publisher's bibliographic system (viewed on 05 Feb 2016) |
Beschreibung: | 1 online resource (xii, 284 pages) |
ISBN: | 9781139565868 |
DOI: | 10.1017/CBO9781139565868 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV043940398 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 161206s2016 |||| o||u| ||||||eng d | ||
020 | |a 9781139565868 |c Online |9 978-1-139-56586-8 | ||
024 | 7 | |a 10.1017/CBO9781139565868 |2 doi | |
035 | |a (ZDB-20-CBO)CR9781139565868 | ||
035 | |a (OCoLC)967758932 | ||
035 | |a (DE-599)BVBBV043940398 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 | ||
082 | 0 | |a 006.3/3 |2 23 | |
100 | 1 | |a Agarwal, Deepak K. |d 1973- |e Verfasser |4 aut | |
245 | 1 | 0 | |a Statistical methods for recommender systems |c Deepak K. Agarwal, Yahoo! Research, Bee Chung-Chen, Yahoo! Research |
264 | 1 | |a Cambridge |b Cambridge University Press |c 2016 | |
300 | |a 1 online resource (xii, 284 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Title from publisher's bibliographic system (viewed on 05 Feb 2016) | ||
520 | |a Designing algorithms to recommend items such as news articles and movies to users is a challenging task in numerous web applications. The crux of the problem is to rank items based on users' responses to different items to optimize for multiple objectives. Major technical challenges are high dimensional prediction with sparse data and constructing high dimensional sequential designs to collect data for user modeling and system design. This comprehensive treatment of the statistical issues that arise in recommender systems includes detailed, in-depth discussions of current state-of-the-art methods such as adaptive sequential designs (multi-armed bandit methods), bilinear random-effects models (matrix factorization) and scalable model fitting using modern computing paradigms like MapReduce. The authors draw upon their vast experience working with such large-scale systems at Yahoo! and LinkedIn, and bridge the gap between theory and practice by illustrating complex concepts with examples from applications they are directly involved with | ||
650 | 4 | |a Recommender systems (Information filtering) / Statistical methods | |
650 | 4 | |a Expert systems (Computer science) / Statistical methods | |
700 | 1 | |a Chung-Chen, Bee |e Sonstige |4 oth | |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-1-107-03607-9 |
856 | 4 | 0 | |u https://doi.org/10.1017/CBO9781139565868 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029349368 | ||
966 | e | |u https://doi.org/10.1017/CBO9781139565868 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9781139565868 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804176880875601920 |
---|---|
any_adam_object | |
author | Agarwal, Deepak K. 1973- |
author_facet | Agarwal, Deepak K. 1973- |
author_role | aut |
author_sort | Agarwal, Deepak K. 1973- |
author_variant | d k a dk dka |
building | Verbundindex |
bvnumber | BV043940398 |
collection | ZDB-20-CBO |
ctrlnum | (ZDB-20-CBO)CR9781139565868 (OCoLC)967758932 (DE-599)BVBBV043940398 |
dewey-full | 006.3/3 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 006 - Special computer methods |
dewey-raw | 006.3/3 |
dewey-search | 006.3/3 |
dewey-sort | 16.3 13 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik |
doi_str_mv | 10.1017/CBO9781139565868 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02715nmm a2200409zc 4500</leader><controlfield tag="001">BV043940398</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161206s2016 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781139565868</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-139-56586-8</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/CBO9781139565868</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9781139565868</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)967758932</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043940398</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">006.3/3</subfield><subfield code="2">23</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Agarwal, Deepak K.</subfield><subfield code="d">1973-</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Statistical methods for recommender systems</subfield><subfield code="c">Deepak K. Agarwal, Yahoo! Research, Bee Chung-Chen, Yahoo! Research</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2016</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xii, 284 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 05 Feb 2016)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Designing algorithms to recommend items such as news articles and movies to users is a challenging task in numerous web applications. The crux of the problem is to rank items based on users' responses to different items to optimize for multiple objectives. Major technical challenges are high dimensional prediction with sparse data and constructing high dimensional sequential designs to collect data for user modeling and system design. This comprehensive treatment of the statistical issues that arise in recommender systems includes detailed, in-depth discussions of current state-of-the-art methods such as adaptive sequential designs (multi-armed bandit methods), bilinear random-effects models (matrix factorization) and scalable model fitting using modern computing paradigms like MapReduce. The authors draw upon their vast experience working with such large-scale systems at Yahoo! and LinkedIn, and bridge the gap between theory and practice by illustrating complex concepts with examples from applications they are directly involved with</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Recommender systems (Information filtering) / Statistical methods</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Expert systems (Computer science) / Statistical methods</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chung-Chen, Bee</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-1-107-03607-9</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/CBO9781139565868</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029349368</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9781139565868</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9781139565868</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043940398 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:39:13Z |
institution | BVB |
isbn | 9781139565868 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029349368 |
oclc_num | 967758932 |
open_access_boolean | |
owner | DE-12 DE-92 |
owner_facet | DE-12 DE-92 |
physical | 1 online resource (xii, 284 pages) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO |
publishDate | 2016 |
publishDateSearch | 2016 |
publishDateSort | 2016 |
publisher | Cambridge University Press |
record_format | marc |
spelling | Agarwal, Deepak K. 1973- Verfasser aut Statistical methods for recommender systems Deepak K. Agarwal, Yahoo! Research, Bee Chung-Chen, Yahoo! Research Cambridge Cambridge University Press 2016 1 online resource (xii, 284 pages) txt rdacontent c rdamedia cr rdacarrier Title from publisher's bibliographic system (viewed on 05 Feb 2016) Designing algorithms to recommend items such as news articles and movies to users is a challenging task in numerous web applications. The crux of the problem is to rank items based on users' responses to different items to optimize for multiple objectives. Major technical challenges are high dimensional prediction with sparse data and constructing high dimensional sequential designs to collect data for user modeling and system design. This comprehensive treatment of the statistical issues that arise in recommender systems includes detailed, in-depth discussions of current state-of-the-art methods such as adaptive sequential designs (multi-armed bandit methods), bilinear random-effects models (matrix factorization) and scalable model fitting using modern computing paradigms like MapReduce. The authors draw upon their vast experience working with such large-scale systems at Yahoo! and LinkedIn, and bridge the gap between theory and practice by illustrating complex concepts with examples from applications they are directly involved with Recommender systems (Information filtering) / Statistical methods Expert systems (Computer science) / Statistical methods Chung-Chen, Bee Sonstige oth Erscheint auch als Druckausgabe 978-1-107-03607-9 https://doi.org/10.1017/CBO9781139565868 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Agarwal, Deepak K. 1973- Statistical methods for recommender systems Recommender systems (Information filtering) / Statistical methods Expert systems (Computer science) / Statistical methods |
title | Statistical methods for recommender systems |
title_auth | Statistical methods for recommender systems |
title_exact_search | Statistical methods for recommender systems |
title_full | Statistical methods for recommender systems Deepak K. Agarwal, Yahoo! Research, Bee Chung-Chen, Yahoo! Research |
title_fullStr | Statistical methods for recommender systems Deepak K. Agarwal, Yahoo! Research, Bee Chung-Chen, Yahoo! Research |
title_full_unstemmed | Statistical methods for recommender systems Deepak K. Agarwal, Yahoo! Research, Bee Chung-Chen, Yahoo! Research |
title_short | Statistical methods for recommender systems |
title_sort | statistical methods for recommender systems |
topic | Recommender systems (Information filtering) / Statistical methods Expert systems (Computer science) / Statistical methods |
topic_facet | Recommender systems (Information filtering) / Statistical methods Expert systems (Computer science) / Statistical methods |
url | https://doi.org/10.1017/CBO9781139565868 |
work_keys_str_mv | AT agarwaldeepakk statisticalmethodsforrecommendersystems AT chungchenbee statisticalmethodsforrecommendersystems |